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Abstract

A receiver wants to learn multidimensional information from a sender, but she

has capacity to verify only one dimension. The sender’s payoff depends on the belief

he induces, via an exogenously given monotone function. We show that by using

a randomized verification strategy, the receiver can learn the sender’s information

fully in many cases. We characterize exactly when it is possible to do so. In

particular, when the exogenous payoff function is submodular, we can explicitly

describe a full-learning mechanism; when it is (strictly) supermodular, full learning

is not possible. We consider variants, including the possibility of using an indirect

mechanism with no off-path histories, and a version with noisy verification. We

also show that constructions based on our approach remain useful even when full

learning is not possible.
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1 Introduction

An HR manager is interviewing a job candidate to form an opinion about the candidate’s

qualities or skills. A prosecutor is interviewing a defendant to decide whether there is a

case that she could prosecute. An insurance company employee is evaluating a claim filed

by its client to decide if it is legitimate or fraudulent. All these cases can be thought of

as an interaction between a sender and a receiver of information, where the former tries

to impress the latter, while the latter tries to infer the former’s private information as

precisely as possible.

This interaction is unlikely to be pure cheap talk. The HR manager can give the

job candidate a test, or can call the college that the candidate lists on his vita to verify

truthfulness of the claim. The prosecutor can compare the defendant’s statements with

evidence obtained otherwise. The insurance company employee can visit the client’s

property and inspect what was damaged or stolen. However, the verification might be

limited: the HR manager might be able to test only a few skills, the prosecutor might

be able to corroborate only some of the defendant’s claims, and the insurance company

might verify only some of the information to ensure speedy processing.

In this paper, we make a strong assumption on the limits to verification: the sender’s

type is multidimensional, and the receiver is only able to verify one dimension. But the

dimension she verifies can depend on the message that the sender sends. What can she

do in this context?

The following example previews our ideas.

Example 1. An IT firm is hiring a programmer, and wants to evaluate a job candidate on

two dimensions: math skills and coding skills. The candidate knows his skills x and y, but

from the firm’s perspective, they are i.i.d. uniform on [0, 1]. The candidate tries to impress

the firm by signaling that the sum of his two skills, x+ y, is as high as possible, because,

for example, this value is linked to the probability of being hired or to the expected salary.

If the firm is not able to verify either dimension, then clearly no useful information

about the total value x + y can be credibly transmitted in equilibrium. At the other

extreme, if the firm can test both skills, it can learn the candidate’s type perfectly. Our

question is what can happen if the firm can test just one skill.

Suppose first that the firm chooses in advance which skill to test. If it chooses math,

then it learns the value x precisely, but does not get any information about y. Conversely,

if it chooses coding, it learns y but gets no update on x.

It is easy to see that the firm can improve by asking the candidate to choose which

test he would like to take. The candidate who is better at math (x > y) would then ask
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to take the math test, and the candidate better at coding would ask for the coding test.

Then, after giving the math test to the candidate who chose it, the firm not only learns

x, but also some information on y, namely, that y is distributed on [0, x], and similarly

the firm that ends up giving the coding test to the candidate learns something about his

math skills. (Notice that it is incentive-compatible for the candidate to report his best

dimension: the firm’s posterior expectation of x+ y would be 3
2
x if he asks for the math

test and 3
2
y if he asks for the coding test, so indeed he prefers the former if and only if

x > y.)

Is there any way the firm can learn even more?

The answer may be a surprise: the firm can learn everything, by using a randomized

mechanism. This can be achieved as follows. The firm asks the candidate to report

p = x
x+y

, and then proceeds by giving the candidate the math test with probability p and

the coding test with probability 1 − p. If the candidate plays along, then the firm will

indeed achieve full learning: after giving the math test (which is possible only if p > 0)

and observing x, it would infer y as y = 1−p
p
x; similarly, after giving the coding test and

observing y, it would infer x as x = p
1−py. It therefore remains to verify that it is incentive

compatible for the candidate to report p = x
x+y

truthfully.

A candidate that reports p = x
x+y

truthfully makes the firm learn his true x + y. A

candidate that deviates and reports p̂ instead makes the firm believe that x̂+ y = x+ 1−p̂
p̂
x

if he gets the math test, and that x̂+ y = p̂
1−p̂y + y if he gets the coding test. Since he

gets the former with probability p̂ and the latter with probability 1 − p̂, in expectation

he makes the impression

p̂

(
x+

1− p̂
p̂

x

)
+ (1− p̂)

(
p̂

1− p̂
y + y

)
= x+ y.

This means that the candidate cannot gain by misreporting, and indeed the firm can learn

everything if it gives the candidate the freedom to choose the testing probabilities.

In what follows, we study how far the simple logic of this example generalizes. We

build a model with two economic agents, a sender (he) and a receiver (she), which we can

think of as a job candidate and an interviewer. The sender has multidimensional private

information (e.g., his skills) and can send a message to the receiver, who can subsequently

verify the value of one of the dimensions. (For most of the paper we assume this verification

is perfect, although we briefly consider a variation with noisy verification.) We think of the

receiver’s problem as one of mechanism design: she commits to a verification rule so that

equilibrium play in the resulting communication game will reveal as much information
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about the private type as possible. We assume that while the receiver is free to design

the verification rule, she has no control over the subsequent (unmodeled) actions that will

generate payoffs for the sender. The sender, in his turn, tries to maximize the overall

impression of the receiver (e.g., her posterior belief about the sum of his skills).

The sender’s gain from convincing the receiver that his type is a is modeled by an

exogenous function V (a) (in Example 1, this is the sum of coordinates). We can think

of this function as a reduced-form way of modeling the outcome of any subsequent in-

teraction between the sender and receiver. We study how the possibility or impossibility

of perfect learning depends on the function V (a); we can give a complete characteriza-

tion of the functions V (a) for which full learning is possible. In particular, when V (a) is

submodular, full learning is possible, whereas if V (a) is strictly supermodular then it is

impossible. (In the boundary case where V is additively separable, as in Example 1 above,

the mechanism is essentially unique.) Our general argument uses direct-revelation mech-

anisms, but when V (a) is submodular and satisfies some additional regularity conditions,

we can also construct an indirect mechanism in which the sender chooses probabilities of

testing each dimension, generalizing Example 1. We then give some robustness checks,

including giving an example where the verified dimension is observed with noise, in which

case exact learning cannot be achieved but we show how it can be achieved in the limit

as the level of noise goes to zero. Finally, we return to perfect verification but consider

specifications of V (a) such that full learning is impossible, and show that the ideas from

our initial analysis can still be leveraged to learn a substantial amount, and in some cases

lead to mechanisms that are optimal in an appropriate sense. In the conclusion we discuss

the practical takeaways and interpretation of the formal results.

Our assumption that the receiver has no control over payoffs (for given beliefs) is

natural for many settings: e.g., in the case of an interviewer and a job candidate, the

interviewer might be obliged to write a truthful report of what she learned to her supervi-

sor, so she may exercise control over what she chooses to learn, but she cannot manipulate

the candidate’s payoffs in any other way. Our other central assumption, that the receiver

can verify exactly one dimension, is of course more stylized. We adopt this assumption

to achieve the starkest results, showing that a minimal amount of verification allows full

learning in Example 1; by maintaining the assumption throughout, we can ask how far

the example can be pushed, in a way that allows for a crisp answer (Proposition 2). It

also allows us to best connect to existing literature, as discussed below.

Our paper contributes to the large literature on strategic information transmission

and communication that starts with Crawford and Sobel (1982) and Holmström (1977),

and more specifically to transmission of multidimensional information (see Sobel, 2013,
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for an extensive review of the literature on strategic communication). In the cheap talk

framework where no information is verifiable, Chakraborty and Harbaugh (2007) show

that some information, in particular, relative statements about the dimensions of interest,

may be transmitted. Chakraborty and Harbaugh (2010) further show that in the linear

case, even when the sender’s preferences are independent of his type, information on all

but one dimension (the “dimensions of agreement”) may be transmitted; this result has

some resemblance to our example above, where one might view the verification as filling

in the missing dimension. Lipnowski and Ravid (2017) consider a more general, abstract

formulation and characterize optimal equilibrium outcomes for the sender. Battaglini

(2002) studies cheap talk with multiple senders; his model shares with ours the possibility

of full learning.1

The paper that is the most related to ours is Glazer and Rubinstein (2004), which also

studies a receiver (‘listener’) who is trying to elicit multidimensional information from

the sender (‘speaker’) and is able to verify at most one dimension. In that paper, the

receiver uses the information learnt to make a binary decision, e.g. whether to hire the

sender or not, and the sender has a constant preference over decisions, e.g. always prefers

to be hired.2 In our terms this corresponds to assuming that V can take two values. The

receiver wishes to minimize the probability of a mistake. The authors characterize the

optimal mechanism as a solution to a particular linear programming problem, show that

it takes a fairly simple form, and show that random mechanisms may be necessary to

achieve the optimum. In contrast to their paper, we consider a broader range of payoffs

for the sender, but focus primarily on the possibility of full learning, which is not discussed

in Glazer and Rubinstein (2004); in their setting, if full learning were possible, it would

of course be optimal.3

Azar and Micali (2018) also study a problem in which an agent has access to a high-

dimensional vector, and the principal wishes to know the value of some function of the

vector, without having the whole vector communicated. They show a result with some

resemblance to ours: their principal can incentivize approximate revelation of the true

value while verifying just one component. They allow the principal to design the incentives

freely, in contrast to our exogenously given V (a).

Our paper is also related in spirit to other literature on communication with verifica-

1Other papers addressing full or nearly-full learning with multiple senders include Ambrus and Taka-
hashi (2008), Meyer, Moreno de Barreda, and Nafziger (2016), and Ambrus and Lu (2014).

2Glazer and Rubinstein (2004) also mention a number of further examples of applications, which could
apply to our paper as well.

3Other papers studying communication of multidimensional information include Austen-Smith and
Fryer (2005), Polborn and Yi (2006), and Egorov (2015).
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tion. Dziuda and Salas (2018) study a cheap-talk model in which the receiver may learn

that the sender lied, but without learning what the truth was; in their model, discovery

of lies is random and exogenous, unlike ours where verification is the object of design.

Deb and Stewart (2018) study an adaptive testing problem where there is a limit on the

number of tests that may be performed, as in our model. There is also a growing branch

of the mechanism design literature with costly verification, started by Townsend (1979),

and more recently including Kartik and Tercieux (2012), Ben-Porath, Dekel, and Lipman

(2014), and Erlanson and Kleiner (2017).

The rest of the paper proceeds as follows. In Section 2, we set up the framework and

define the notion of a valid mechanism. Section 3 analyzes the model, characterizing when

full learning is possible. Section 4 considers robustness to several variations, including

adding a condition on off-path beliefs that limits the possibility of punishing deviations

by the sender, and also presents our example with noisy verification. Section 5 takes up

the question of designing mechanisms in cases where full learning is impossible. Section

6 concludes.

2 Setup

There are two agents, whom we call the sender and the receiver. The sender has multi-

dimensional private information, which we call his type and denote a = (a1, . . . , an) ∈ A,

where A = [0,∞)n is the space of possible types. This type follows a prior distribution

Φ ∈ ∆(A).

After the sender and receiver interact, the receiver will be left with some (possibly

probabilistic) posterior belief µ ∈ ∆(A) concerning the sender’s type. We take as given a

function V : ∆(A)→ R; V (µ) denotes the payoff that the sender gets if he induces belief

µ. In particular, for a type a ∈ A, we write V (a) for the payoff that the sender gets if

he induces a belief that is a point mass on a. For instance, in the job candidate example,

V (µ) could represent the salary that the candidate will receive if the interviewer’s posterior

belief is µ (perhaps this is simply the posterior expectation of his marginal product for the

firm). In the prosecution example, V (µ) would denote the probability that the prosecutor

drops the case. More generally, we have in mind a signaling-game-like situation in which,

after learning, the receiver takes some action that generates a payoff for the sender; but

we have no need to model this action explicitly, so instead we summarize it with the

function V (·).
When the sender communicates with the receiver, he faces uncertainty over what be-

lief µ will be induced: in particular, if the receiver plans to verify a randomly chosen
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dimension, µ may depend on which dimension is verified. We assume that V (·) is a von

Neumann-Morgenstern utility function, so that the sender acts to maximize the expecta-

tion of V (µ). We assume throughout that V is weakly increasing: if µ, µ′ ∈ ∆(A), and µ

first-order stochastically dominates µ′, then V (µ) ≥ V (µ′). We also normalize V (0) = 0

(hereinafter, we use 0 to denote the null vector when it does not cause confusion).

The sender and the receiver can engage in a strategic interaction with the following

structure: The sender can transmit a message. The receiver can then verify one component

of the sender’s type. We will assume that if the receiver chooses to verify dimension i,

she then learns the value of ai perfectly. The receiver can commit in advance to the

verification strategy, but has no control over the post-verification interaction and thus

simply takes as given the function V (·). We will also, in line with the mechanism design

tradition, assume that the receiver can choose an equilibrium of the ensuing game.

Our primary interest is whether the receiver can fully learn the sender’s type in equi-

librium. This allows us to avoid having to specify a particular numerical objective for the

receiver to maximize. However, in Sections 4 and 5 we will consider situations where full

learning is not possible, and will discuss relevant criteria for the receiver as needed.

Formally, the object chosen by the receiver — describing both the game in which

the sender and receiver interact, and the equilibrium thereof — is a mechanism, a tuple

M = (M,σ, p, µ), where:

• M is a message space;

• σ : A→ ∆(M) is a (possibly mixed) reporting strategy for the sender;

• p is a (possibly mixed) verification strategy for the receiver, specifying probabilities

(p1(m), . . . , pn(m)) that sum to 1, for each m ∈M (here pi(m) is the probability of

verifying dimension i);4

• µ is a belief system for the receiver, specifying posteriors µ(h) ∈ ∆(A) for each

h ∈ H, where

H = {(m, i, s) | m ∈M, pi(m) > 0, s ∈ [0,∞)}

is the set of (receiver) histories that are possible given verification strategy p.

4Notice that this formulation requires the receiver to check one dimension. We could also allow for
some probability p0(m) of not checking anything, at the cost of some notational inconvenience. For our
main (full-learning) results, this would not help the receiver: for any full-learning mechanism that places
positive probability on no verification, we could move this probability mass onto verifying dimension 1
without weakening the incentives for truthful reporting.
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Note that the receiver’s beliefs are defined as functions of the history; a history (m, i, s)

means that message m was sent, dimension i was verified, and the value observed was s.

We assume that once the belief µ is induced, the sender receives a payoff equal to V (µ).

We say that the mechanism is a direct mechanism if the sender just reports his type

truthfully: M = A, and σ(a) = a (deterministically) for each a.

We say that the mechanism is valid if the sender’s strategy and beliefs constitute an

equilibrium (more specifically, a weak PBE). That is, validity requires the following:

• Incentive compatibility (for sender): For each a ∈ A, σ(a) has its support contained

in the set of m ∈M that maximize

n∑
i=1

pi(m)V (µ(m, i, ai)).

• Bayesian updating : Let H̄ = A × H denote the set of full histories, specifying

both the sender’s true type and the interaction with the receiver. The prior Φ and

the strategies σ, p together induce a probability distribution ζ̄ over H̄. Let ζ be

the marginal distribution over H. Then, we require that for any measurable set of

receiver histories H ′ ⊂ H and any measurable set of types A′ ⊂ A,∫
H′
µ(h)(A′) dζ(h) = ζ̄(A′ ×H ′).

Note that we have not required incentive compatibility for the receiver’s verification.

This this reflects the assumption that the receiver commits in advance to the verification

strategy. Our definition of H in the specification of beliefs also reflects this assumption:

we do not require beliefs to be defined at “histories” (m, i, s) that would be reachable

only if the receiver failed to follow the verification strategy.

Bayesian updating serves to pin down beliefs at on-path histories, but imposes no

constraints on beliefs at off-path histories. It will sometimes be convenient to focus on

mechanisms satisfying the following:

• Punishment beliefs : For any receiver history h = (m, i, s) that is outside the support

of ζ, the belief µ(h) is a point mass on type 0.

Indeed, the usual argument shows that any outcome that can be supported by some

mechanism can in particular be supported by a mechanism with punishment beliefs. (Re-

call that by monotonicity, the punishment belief is indeed the one with the lowest possible

value of V .)
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Notice, however, that punishment beliefs effectively mean that at off-path histories,

the receiver does not place full faith in the accuracy of the verification technology, since

if s 6= 0, the verification shows that the sender is not actually the zero type. We could

alternatively impose the following condition:

• Trusted verification: For any history h = (m, i, s), the belief µ(h) puts no probability

on types a with ai 6= s.

For our main analysis, we will not impose this condition. The model without trusted

verification has several interpretations: We could view the model as a limiting case where

the receiver has infinitesimal uncertainty about the correctness of the verification technol-

ogy. We could also treat it as a shorthand for a situation in which the receiver can commit

to give the worst payoff V (0) when the sender is known to have deviated (for example, in

the employment application, we might simply imagine that the company refuses to hire

a candidate who has been caught lying; in the insurance claim example, the insurance

company might not be obligated to honor any claims if it has shown that one claim was

false). Finally, we can also associate it with an alternative model in which the receiver

can only perform verifications of the form “is ai equal to s?” for a specific value of s,

rather than “what is ai?” In such a model, an off-path negative answer would generally

not preclude the punishment belief that places all weight on type 0. (For brevity, we

avoid writing out this alternative model in full.) In any case, in Section 4 we will consider

imposing trusted verification and will show that our main conclusions are robust to it.

We are particularly interested in mechanisms that allow full learning of the sender’s

type.5

• Full learning : For every type a, at every history h ∈ H(a | M), the belief µ(h) is a

point mass on type a. Here, we define

H(a | M) = {(m, i, ai) ∈ H : m ∈ supp(σ(a))},

the set of histories that can arise when the sender has type a.

Before moving on, we add one observation: The function V (·) appears only in the

incentive compatibility condition, and this condition is invariant under translating the

5In some applications, we may think the receiver is content to learn the value of V (a) without learning a
itself: e.g. the employer may be interested in knowing the worker’s total output, but not how it is achieved.
While learning V (a) may appear to be a simpler problem than learning a, in fact it is not: if there is a
valid mechanism that allows the receiver to learn V (a), there is also one that achieves full learning. For
a formal statement and proof, see Proposition A2 in the Appendix.
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whole function V (·) by a constant. Thus it is indeed just a normalization to assume that

V (0) = 0.

3 Main Analysis

3.1 Initial observations

Our main question in this section is: For what payoff functions V (·) does there exist a

mechanism that achieves full learning?

We begin with a version of the revelation principle. This shows that we can restrict

attention to direct mechanisms, and also can assume punishment beliefs as described

above.

Lemma 0. If there exists a valid mechanism with full learning, then there exists a valid

direct mechanism satisfying punishment beliefs and full learning.

The proofs of this and other results that are not given in the text are in the Appendix.

By focusing on direct mechanisms that furthermore satisfy punishment beliefs, we see

that we need only specify the verification strategy p, since the message space, sender

strategy and beliefs are pinned down. Specifically, full learning is possible if and only if

there exists a choice of verification probabilities p = (p1, . . . , pn), with each pi : A→ [0, 1]

and
∑

i pi(a) = 1 for all a, satisfying the incentive compatibility condition for all types a

and â:

V (a) ≥

( ∑
i: âi=ai

pi(â)

)
V (â). (1)

Indeed, here the left side represents the payoff that the sender gets from truthfully re-

porting type a, which will be V (a) no matter which dimension is verified; and the right

side is the expected payoff from reporting â, given the punishment beliefs.

3.2 Additively separable case

We begin by reconsidering Example 1 from the Introduction; actually a slight formal

generalization of this example. We show that the verification probabilities that allow full

learning not only exist for any n, but are essentially unique.

Specifically, suppose V (a) is additively separable in its components, so

V (a) =
n∑
i=1

vi (ai) , (2)
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where vi : [0,∞)→ R are increasing functions. Since we assumed V (0) = 0, we may pick

vi (·) such that vi (0) = 0 for each i.

Proposition 1. Suppose that V is additively separable and defined by (2). Then, full

learning is achieved by the valid direct mechanism using the verification probabilities

pi(a) =
vi (ai)

V (a)
=

vi (ai)

v1 (a1) + · · ·+ vn (an)
(1 ≤ i ≤ n)

for each a such that V (a) 6= 0 (and arbitrary verification probabilities for a such that

V (a) = 0). Furthermore, these probabilities are unique: If M = (M,σ, p, µ) is a valid

(possibly indirect) mechanism with full learning, then for any type a ∈ A with V (a) > 0,

for any m ∈ supp(σ(a)), we have

pi(m) =
vi (ai)

v1 (a1) + · · ·+ vn (an)
(1 ≤ i ≤ n).

Proof. For existence, we just need to check that incentive compatibility (1) is satisfied. For

any â, the right-hand side of (1) equals
∑

i:âi=ai
vi(âi). This is clearly at most

∑n
i=1 vi(ai) =

V (a), as needed.

To prove uniqueness, consider any type a, and the alternative type a′ that agrees with

a in all coordinates except in coordinate i, where a′i = 0. Let m be any message in the

support of σ(a).

The assumption of full learning implies that, if type a′ sends message m and coordinate

i is not verified, then the resulting belief places probability 1 on type a, and the sender gets

reward V (a). Hence, the expected payoff to sending message m is at least (1−pi(m))V (a).

So incentive compatibility for the pair of types a′ and a implies

V (a′) ≥ (1− pi(m))V (a),

which implies

pi(m) ≥ V (a)− V (a′)

V (a)
=

vi(ai)

v1(a1) + · · ·+ vn(an)
.

Since we must also have
∑n

i=1 pi(m) = 1, these inequalities must hold as equalities.

The mechanism suggested in Proposition 1 has several remarkable properties. To

state them, assume for simplicity that each vi is strictly increasing and continuous, and

in particular V (a) = 0⇔ a = (0, . . . , 0).

• The mechanism can be implemented as an indirect mechanism, as in the Introduc-
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tion, where the sender chooses a probability distribution (q1, . . . , qn) over dimensions

to verify (so M is an (n−1)-dimensional simplex of probabilities). When dimension

i is verified and the observed value is s, the receiver infers vj(aj) =
qj
qi
vi(s) for each

j, and so infers a completely by inverting each vj.

• The mechanism also does not actually require the receiver to commit to the ver-

ification strategy, as we have assumed. Indeed, if she could freely choose which

component to verify, note that once she has heard message m, she expects to end

up believing (with probability 1) that the sender is type m (and to give reward

V (m)) regardless of which component she verifies, so she is indifferent at this stage.

• The mechanism does not depend on the distribution of sender’s type Φ. Moreover, it

would perform just as fine if the receiver had a wrong belief about Φ. Implementing

this mechanism therefore requires the receiver to know the payoff function V (·) and

nothing else.

• In the case where all vi are linear, the indirect implementation highlights that the

parties do not need to agree on the “scale” in which the type is measured, i.e. it

works even if the sender perceives his type as (λa1, . . . , λan) rather than (a1, . . . , an),

for an arbitrary positive scalar λ.

As it turns out, all these properties (with the exception of the last one) hold quite a

bit more generally.

3.3 General characterization

We now provide a necessary and sufficient condition for full learning to be achievable. For

this we need a bit of notation. Whenever S ⊂ {1, . . . , n} is a set of indices and a ∈ A,

define a|S as the type that agrees with a on the components i ∈ S, and whose other

coordinates are all zero. Also, when S has a single element i, we will write a|i rather than

a|{i}.

Proposition 2. There exists a valid mechanism that achieves full learning if and only if

V satisfies the following condition. For every a ∈ A, and any collection of nonnegative

weights λS for each of the 2n sets S ⊂ {1, . . . , n} that satisfies
∑

S:i∈S λS = 1 for each

index i = 1, . . . , n, we have

V (a) ≤
∑

S⊂{1,...,n}

λSV (a|S).
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To see why the characterization takes this form, consider what happens to the incentive

condition (1) when we hold fixed the report â, and also hold fixed the coordinates ai of

the true type for which ai = âi, but vary the other coordinates aj. Then the right side

of (1) is constant, while the left side is increasing in a. Consequently, the constraint is

tightest when a = â|S for some set S: if we can deter these types a from reporting â, then

all other types are deterred as well. So full learning is achievable as long as we can choose

the verification probabilities for each type a to deter misreporting by the (finitely many)

types a|S. The proposition gives a duality-based characterization of when this is possible.

The condition in Proposition 2 takes a particularly simple form if n = 2: the only

possible weights are of the form λ{1} = λ{2} = λ and λ{1,2} = 1 − λ, and the condition

simplifies to V (a) ≤ V (a|1)+V (a|2). Indeed, in this case, the argument from the previous

paragraph implies that taking p1(a) = V (a|1)/V (a) and p2(a) = 1−p1(a) will suffice. The

following result describes the complete set of verification probabilities.

Proposition 3. If n = 2, then there is a valid mechanism that achieves full learning if

and only if V (a) ≤ V (a|1) + V (a|2) for each a. A direct mechanism is valid if and only if

verification probabilities satisfy, for any a:

p1(a) ≥ 1− V (a|2)

V (a)
, p2(a) ≥ 1− V (a|1)

V (a)
.

3.4 Submodular and supermodular functions

Here we give a couple of illustrative applications of Proposition 2.

First, suppose that the payoff function V is submodular.6 In this case, the condition

in Proposition 2 holds, and in fact the proof of that proposition leads to a simple explicit

construction for a direct mechanism with full learning, which we state as a separate result.

To state the result formally, following on our a|S notation, for each a ∈ A and each

i = 1, . . . , n, let a|[i] be the type whose first i components agree with a, and whose

remaining n− i components are all zero. Consistently with this, let also a|[0] = (0, . . . , 0).

Proposition 4. Suppose that V is submodular. Then the following valid direct mechanism

achieves full learning: If V (m) > 0, dimension i is verified with probability

pi (a) =
V (a|[i])− V (a|[i−1])

V (a)
,

6The function V is submodular if V (a ∨ a′) + V (a ∧ a′) ≤ V (a) + V (a′) for all a, a′, where ∨ denotes
componentwise max and ∧ denotes componentwise min. V is strictly submodular if the inequality holds
strictly whenever {a ∨ a′, a ∧ a′} 6= {a, a′}. V is supermodular (resp. strictly supermodular) if −V is
submodular (resp. strictly submodular). Additively separable functions are both sub- and supermodular.
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and if V (a) = 0, the probabilities are chosen arbitrarily.

On the other hand, if V is (strictly) supermodular, full learning is not achievable.

For example, suppose V (a1, a2) = min{a1, a2}. To deter deviations to reporting type

(1, 1), the first dimension must be tested with probability 1 (otherwise type (0, 1) would

misreport), but likewise the second dimension must be tested with probability 1, and we

cannot do both. By the exact same reasoning, V (a1, a2) = a1a2 would not allow full

learning either.

In fact, we can give a broader impossibility result:

Proposition 5. Suppose that there is a type a such that

V (a) >
n∑
i=1

V (a|i). (3)

Then there does not exist a valid mechanism that achieves full learning.

Note that if V is strictly supermodular (and V (0) = 0 as we have assumed), then the

condition in the proposition is satisfied for any type a that is positive in every coordinate.

So, the proposition covers such functions (but is also much more general).

Proof. Take type a for which the inequality holds. Note that the condition in Proposition

2 is violated, by taking λ{i} = 1 for each i, and λS = 0 for all non-singleton sets.

For a simple intuition about why the submodular versus supermodular distinction

arises, think about the job candidate with two possible skills, as in Example 1. A candidate

who is strong on one skill but weak on the other has a potential incentive to pretend to

be strong on both. This can be deterred if the weak skill is verified with sufficiently

high probability. But if the skills are complements (supermodular case), the gains from

appearing to be strong on both skills rather than just one are high, and there is no way to

choose verification probabilities to deter both a (strong math, weak coding) candidate and

a (weak math, strong coding) candidate. Whereas if the skills are substitutes (submodular

case), the gains are smaller and this can be done.

For some specific, stark examples, consider first the function V (a1, a2) = max{a1, a2},
which is submodular; then full learning is achievable simply by always testing whichever

coordinate is reported higher — which is in line with Proposition 3. In contrast, in the case

of function V (a1, a2) = min{a1, a2}, which is supermodular; we show below (Proposition

16) that in a certain precisely defined sense, the receiver can do no better than learning

one dimension.
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3.5 Indirect mechanisms

The results presented in the preceding subsections provide a general characterization of

when full learning is achievable. The construction employed a direct mechanism that, in

particular, required punishing the sender with the worst possible belief in case verification

failed.

In Example 1, however, we used an indirect mechanism, in which the sender effectively

just reports the probability vector q by which he should be tested, and the one verified

coordinate is then used to infer all other coordinates. This has a few advantages. First,

essentially all histories are on-path, so we do not need to worry about the choice of off-path

beliefs. Second, direct mechanisms with punishment beliefs are fragile in the sense that,

if the sender’s belief about his own type is off by an ε amount, the receiver ends up with a

posterior that is very far from the truth; indirect mechanisms avoid this fragility, as long

as V is continuous. (We will address a related topic in more detail in Subsection 4.4.) A

third advantage is that, if the receiver could actually choose not to verify anything, and

verifying came at a small cost ε > 0, then in a direct mechanism, the receiver ex-post

would not have the incentive to actually carry out the verification, whereas in an indirect

mechanism she could, since she is still uncertain about the type after hearing the message.

Hence, we might naturally wonder whether the indirect mechanism can be readily

generalized to other V (·). As it turns out, it generalizes quite broadly: we can give

a construction for any V that is submodular and satisfies some regularity conditions;

although our construction is not quite as explicit as the one in Proposition 4 above.

Specifically, suppose that V is submodular and continuously differentiable, and write

Vi for the derivative with respect to coordinate i. Suppose further that all partial deriva-

tives Vi are bounded in an interval [k,K], where 0 < k < K <∞. These assumptions will

be maintained for the remainder of this subsection. Note that the set of submodular func-

tions satisfying these regularity conditions is dense in the set of all increasing continuous

submodular functions, in the topology of uniform convergence on compact sets.

For any vector q = (q1, . . . , qn) of probabilities summing to 1, define a parametric

curve a(q, t) = (a1(q, t), . . . , an(q, t)) for t ≥ 0 by the differential equations

∂ai
∂t

=
qi

Vi(a(q, t))
(4)

and the initial condition a(q, 0) = 0. In the indirect mechanism, we simply have the agent

report the probability vector q for the curve his type lies on, and the receiver verifies each

dimension i with the corresponding probability qi.
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Of course, for this mechanism to be well-defined, we need to know that every possible

type does indeed lie on some such curve.

Lemma 6. For every type a ∈ A, there exist q and t such that a(q, t) = a.

Note that in fact, a lies on the curve defined by q if and only if a = a(q, V (a)).

This follows from the fact that d
dt
V (a(q, t)) =

∑
i
∂ai
∂t
· Vi(a(q, t)) =

∑
i qi = 1, hence

V (a(q, t)) = t for all t.

We have not ruled out the possibility that the type a lies on more than one such

curve.7 (And of course this is true for a = 0, which lies on every curve.) In this case, we

will have type a mix according to an arbitrary full-support distribution over the relevant

set of curves.

If i is a coordinate such that qi > 0, notice that (4), together with our bounds on

derivatives, ensures that ai(q, t) is strictly increasing and goes to∞ as t→∞. Continuity

then implies that for every s ≥ 0, there exists a unique t such that ai(q, t) = s. Type a(q, t)

can generate the history (q, i, s) by reporting as prescribed above; thus every history in

H is on-path.

In summary, the mechanism is described as follows:

• The message space consists of all probability vectors q = (q1, . . . , qn), with qi ≥ 0

and
∑

i qi = 1.

• For the reporting strategy, each type a uses an (arbitrary) full-support distribution

over the set of q such that a lies on the curve defined by q. (This set is nonempty,

by Lemma 6, and closed since it is given by the equation a = a(q, V (a)).)

• Given message q, the receiver verifies each coordinate i with probability qi.

• At any history (q, i, s) ∈ H, the receiver’s belief puts probability 1 on a(q, t) where

t is the unique value satisfying ai(q, t) = s.

Proposition 7. Suppose that V is submodular and continuously differentiable, and all

partial derivatives Vi are bounded in the interval [k,K]. Then the indirect mechanism

described above is a valid mechanism that achieves full learning.

The proof involves a judicious use of submodularity to compare the payoff that a type

not on the a(q, ·) curve would get by reporting probability vector q against this type’s

equilibrium payoff, and to show that there is no gain from deviating.

7For n = 2, it is easy to show that the curves do not intersect except at a = 0.
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4 Robustness

4.1 Trusted verification

As mentioned in Section 2, it is natural to consider imposing the trusted verification

condition as a restriction on beliefs when the sender is found to have misreported. How

much do our results change under this restriction?

First, our major qualitative conclusions remain unchanged. In particular, full learn-

ing is still possible whenever V (·) is submodular, although the explicit mechanism from

Proposition 4 no longer works,8 and indeed, we do not know of a similarly simple explicit

formula for a mechanism that works in general. Actually, when V satisfies the regularity

assumptions of Proposition 7, that proposition already shows that full learning is possible;

notice that trusted verification is automatically satisfied since every history h = (m, i, s)

is on-path. But even for submodular functions that fail those regularity assumptions, full

learning is possible:

Proposition 8. Suppose that V is submodular. Then there exists a valid direct mechanism

that achieves full learning and satisfies trusted verification.

The proof of Proposition 8 is nonconstructive. As before, the idea is to find verification

probabilities p(a) for any fixed a ∈ A that deter any other type z 6= a from deviating by

reporting type a, and we now use the Kakutani fixed-point theorem to show that such

probabilities exist. More specifically, for any verification probability vector p, we consider

the set of types z ≤ a that would gain the most from misreporting as a. We then let Ep be

the set of all alternative verification probability vectors that would successfully deter these

types from deviating. This set is quickly shown to be nonempty using the submodularity

of V . It turns out that the correspondence p 7→ Ep is not upper-hemicontinuous, so we

cannot apply the Kakutani fixed-point theorem immediately, but we can “smooth out”

Ep appropriately to yield a correspondence for which the theorem does apply. Taking p

to be a fixed point, then, all types that would gain the most from deviating under p are

deterred from deviating, which is exactly what we need.

Our other main conclusion from Section 3 was that strictly supermodular V does not

allow full learning (Proposition 5). Clearly this conclusion also still holds up when we

restrict mechanisms by requiring trusted verification.

8For example, take n = 2 and V (a1, a2) = max{a1, a2}. Then under the verification strategy from
Proposition 4, type (1, 1) can strictly gain from reporting as type (1, 2) if the receiver’s beliefs upon
detecting the lie are constrained by trusted verification.
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With trusted verification, we do not know of a complete characterization of the func-

tions V (·) for which full learning is possible. However, we do have such a characterization

for the two-dimensional case:

Proposition 9. Suppose that n = 2. Then full learning is achievable with a valid mech-

anism satisfying trusted verification if and only if V satisfies the following property: for

any two types x, a ∈ A with x < a, we have

(V (a)− V (x1, a2)) (V (a)− V (a1, x2)) ≤ (V (x1, a2)− V (x|1)) (V (a1, x2)− V (x|2)) .

The proof in fact gives an explicit construction of a full-learning mechanism when the

condition is satisfied. One can also use this result to construct functions for which full

learning is possible without the trusted verification requirement, but not possible with it,

thus showing that the restriction on beliefs does have bite.

4.2 Concave transformations

Another interesting property is that any mechanism that achieves full learning is robust

to concave transformations of the sender’s payoff function:

Proposition 10. Let V be such that full learning is achievable in a valid direct mechanism

M. Then the same mechanism M also achieves full learning when the payoff function is

V ′ = U ◦ V , where U : [0,∞)→ [0,∞) is any increasing, concave transformation.

Essentially, the result holds because when a mechanism achieves full learning, the

sender is certain of his payoff along the equilibrium path, whereas by deviating he gets a

lottery over payoffs. Concave transformations make such a lottery even less desirable.

Concave transformations can arise naturally in two ways. First, if V is the monetary

payoff that the sender receives (for example, if he is a job candidate who is paid his

perceived marginal product), then U can represent risk aversion. Thus, the proposition

says that any mechanism that achieves full learning for a risk-neutral sender also works

when the sender is risk-averse. Second, V might represent value measured in some abstract

units, and U can represent decreasing returns. For example, if the job candidate’s “total

skill” is a1 + · · · + an, the proposition says that any mechanism that works when the

candidate’s marginal product equals his total skill also works when there are decreasing

returns to total skill.
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4.3 Payoffs depending on sender’s type

We have so far assumed that the sender’s payoff V (a) (or, more generally, V (µ)) depends

only on the receiver’s posterior belief, but not on the sender’s true type. In some natural

cases, however, this assumption ought to be relaxed. To allow for these possibilities, let

us denote the payoff of a sender of type x if the receiver’s posterior is that he is of type

a by V (a;x). We have the following result.

Proposition 11. Suppose that V (a; a) satisfies the condition in Proposition 2 and V (a;x) ≤
max {V (a; a), V (x;x)} for all a and x, and furthermore, V (0;x) = 0 for every x. Then

there is a valid direct mechanism that achieves full learning.

Proposition 11 says that the previous results generalize as long as type x pretending

to be type a cannot be better off than both types x and a telling the truth. This would

be the case, for example, if there is a cost of lying: in this case, V (a;x) ≤ V (a; a) (and

in particular, V (0, x) ≤ V (0; 0) = 0) and the condition holds. But the assumption is

more general than that: suppose, for example, that for the deception to continue, a lower

type must exert extra effort, while a higher type can afford to slack. For example, let

V (a;x) =
∑n

i=1 ai−
∑n

i=1 κ (ai − xi), so the cost of effort is proportionate to the difference

between the receiver’s belief that the sender needs to maintain and the true dimension,

with coefficient κ ∈ (0, 1) (and suppose that the worst type 0 is never hired, so V (0;x) = 0

for all x). Then

V (a;x) =
∑n

i=1
(1− κ) ai +

∑n

i=1
κxi = (1− κ)V (a; a) + κV (x;x)

≤ max {V (a; a), V (x;x)} ,

so the condition is satisfied. This Proposition also shows the limits of the argument: for

example, if κ > 1, then for a high type the temptation to pretend to be a low type and

save on effort would be too high; in that case, clearly, full learning would not be feasible.

4.4 Noisy verification

So far, we have assumed that if the receiver chooses to verify dimension i of the sender’s

private information (type), she observes the exact value of ai. Suppose, however, that

if dimension i is verified, the receiver gets a noisy signal s ∈ [0,∞), drawn from a full-

support distribution ρi (s|ai); this formulation is natural in many settings. The original

definition of a valid (indirect) mechanism extends readily to this case, with incentive

compatibility appropriately formulated by taking expectations over the possible signals.

But how robust are our results on full learning?
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In such a setting, it is easy to see that full learning is not possible. Indeed, if any signal

s can occur in equilibrium if dimension i is verified, then the Bayesian property implies

that the receiver only uses the sender’s message to infer his type, which obviously creates

room for manipulation. Thus, the right question to ask is how close we can get to full

learning. We cannot use direct mechanisms (since any such mechanism would necessarily

imply full learning), so we have to focus on indirect ones. Below, for specificity we return

to our canonical example with V (a) =
∑n

i=1 ai, and show that an appropriate modification

of the “relative skills” mechanism from that example can still perform well; in fact, it can

approximate full learning as the level of noise goes to zero. For this we make some specific

distributional assumptions.

We define Φ, the distribution of sender’s types, as follows. Let (ν1, . . . , νn) be a vector

of any real numbers, (τ1, . . . , τn) be a vector of positive numbers (we let τ =
∑

i τi), and

let K be a positive constant. Consider an auxiliary distribution on [0,∞)n, defined by

generating a random type z as follows: each zi is lognormal, with log zi ∼ N
(
νi,

1
τi

)
(so

νi is the mean and τi is the precision), and the dimensions {zi}i∈{1,...,n} are independent.

Refer to this distribution of z as Λ. Now let AK be the cone defined by inequalities

AK =

{
a :

ai∑n
j=1 aj

≥ τi
τ +K

for each i

}
.

Notice that for any K > 0, this set is nonempty and becomes the entire positive

octant A as K → ∞. Now, we define distribution Φ as Λ, restricted to the cone AK .

(This restriction will help simplify the description of the mechanism in the result below,

by ensuring positiveness of the probabilities involved.)

We now define ρi(s|ai), the conditional distribution of the signal s that the receiver gets

if she verifies dimension i of a sender with type a, as lognormal with log s ∼ N
(

log ai,
1
χ

)
(and if ai = 0, then s = 0 for sure). This is equivalent to assuming that s = aiη, where

η is multiplicative noise (independent from a) such that log η ∼ N
(

0, 1
χ

)
. Here χ is

a parameter governing informativeness of the signal. As χ → ∞ the signal becomes

perfectly informative.

Since the receiver will now typically have non-degenerate posterior beliefs, we need to

return to having V be a function of the belief. For simplicity we assume that V (µ) is

just the posterior mean of V (a), and the latter is a concave power function of the “total

ability”: V (µ) = Ea∼µ [(
∑

i ai)
γ] for γ ∈ (0, 1]. (Thus we slightly generalize the setting of

Example 1, where γ = 1.)

For a final bit of notation, recall that for any mechanism M = (M,σ, p, µ), µ (h) is
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the posterior distribution of a conditional on history h. Let κ = κ (a) be the probability

measure that “aggregates” µ (h) over all possible histories that type a may generate

in equilibrium (see the Appendix for formalities). We show that, for an appropriately

constructed family of mechanisms (indexed by χ), the corresponding distributions κχ (a)

converge to a for all a ∈ AK as the noise disappears:

Proposition 12. There exist a set of mechanisms {Mχ}χ>K, whereMχ = (Mχ, σχ, pχ, µχ),

satisfying the following: Mχ is the unit simplex of probabilities restricted to the cone AK;

the reporting strategy σχ (a) of any type a ∈ AK prescribes him to report his “relative

skills”
{

ai∑n
j=1 aj

}
i∈{1,...,n}

with probability 1, and the receiver, after getting message m,

verifies dimension i ∈ {1, . . . , n} with probability pχi (m) = mi

(
1 + τ

χ

)
− τi

χ
. Mechanism

Mχ is valid when the signal precision is χ.

Under these mechanisms, for any a ∈ AK, the corresponding probability measure

κχ (a) converges in distribution to an atom on a as χ → ∞. In other words, for any

a ∈ AK and any ε, δ > 0 there is χε,δ,a such that for any χ > χε,δ,a, the probability

Prx∼κχ(a) (maxi |xi − ai| > ε) < δ.

Notice that we do not claim that the mechanisms constructed, {Mχ}, are optimal in

any sense; what is important is that these are valid mechanisms that achieve convergence

of the posterior distributions. One notable new feature is that in these mechanisms,

dimension i is less likely to be tested if τi is high, i.e., if the variance 1
τi

of the prior

distribution of ai is low. The reason is intuitive: in this case, the receiver knows ai quite

well without testing, and thus testing that dimension is not as useful.

5 Imperfect Learning

5.1 Motivating example

Our inquiry so far was focused on the cases where full learning is possible, and Proposition

2 gave a complete characterization. But for some important classes of functions full

learning is not achievable, e.g. supermodular ones. It is natural to ask how much the

receiver can learn using a valid mechanism.

This is not an easy question with a simple universal answer, as one would see below.

The first complication, that we have avoided so far, is that the receiver’s posterior beliefs

(and thus the sender’s incentives and thereby the solution to the receiver’s problem) would

depend on the distribution of sender’s types. The second is that we would have to define
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a specific objective function for the receiver: for example, some receivers might want to

be guaranteed to learn the sender’s type almost perfectly, while others might prefer full

learning for some types of senders at the expense of little learning for others. Mechanisms

that achieved full learning were robust both to the distribution of senders and to the

receiver’s objective as long as she valued more information; in this Section this will not

be the case.

To make progress, we assume n = 2 for now. Also, for the remainder of this Section,

we will define V (a) for individual types a, and will assume that V is extended to non-

degenerate beliefs by V (µ) = Ea∼µ[V (a)].9

We find it helpful to start by identifying the obstacles to existence of valid mechanisms

with full learning. Recall that according to Proposition 3, full learning is achievable for

n = 2 if and only if for every a = (a1, a2), V (a1, 0) + V (0, a2) ≥ V (a). Intuitively, if this

does not hold, then types (a1, 0) and (0, a2) have too strong incentive to pretend to be type

a, and deterring them with just one test is impossible. This is an important insight, and

we will use it to construct valid mechanisms with only one test by improving the payoffs

of types of the form (a1, 0) and (0, a2) by pooling them with types with higher values of

V . The following example previews our results and is important for what follows.

Example 2. Define, for each value of t ∈ [0, 1], function

Zt (a) = (1− t) (a1 + a2) + tmin {a1, a2} (5)

(it may also be written as a1 + a2− tmax {a1, a2}). Let Φ be the uniform distribution on

[0, L]× [0, L] for some finite L > 0, and let φ be the corresponding density function. Func-

tion Zt (a) is strictly supermodular unless t = 0, and thus full learning is not achievable

when V ≡ Zt.

However, consider the following mechanism. Types a with a2 < ta1 send message

(a1, ∗) (where ∗ is a special symbol; we use it to distinguish one-dimensional messages

that identify the first coordinate from those that identify the second coordinate). Upon

receiving such a message, the receiver verifies dimension 1 for sure. Similarly, types a with

a1 < ta2 send message (∗, a2); upon receiving such a message, the receiver verifies dimen-

sion 2 for sure. Lastly, any type a with min {a1, a2} ≥ tmax {a1, a2} reveals his type truth-

fully, whereas the receiver who got message (a1, a2) verifies the two dimensions with prob-

abilities p1 (a) = a1
a1+a2

and p2 (a) = a2
a1+a2

(assuming a 6= 0; that type may have any verifi-

cation probabilities). In this mechanism, full learning is achieved for measure 1−t of types.

9If V is unbounded, we may have V (µ) =∞ for some µ, but such beliefs will not actually arise in our
arguments.
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Let us show that this mechanism (with corresponding beliefs10) is valid. In equilib-

rium, the types that pool to send message (a1, ∗) (that is, types a with a2 ∈ [0, ta1)) get

payoff of a1

(
1− t

2

)
. Such a type cannot benefit by sending (x, ∗) with x 6= a1 (he will get

caught for sure and get payoff 0) or (∗, y) for y 6= a2 (for the same reason). If he reports a2

truthfully (sends message (∗, a2)), he would be pooled with types who send this message

in equilibrium, and get a payoff of a2

(
1− t

2

)
, but this is not profitable, since a1 ≥ a2.

Now suppose the sender decides to mimic a type that reveals fully in equilibrium; this can

only be worthwhile if he reports truthfully in one of the coordinates. Suppose he reports

(a1, y); then it must be that y ≥ ta1 (otherwise such message is not allowed). He passes

with probability a1
a1+y

and gets caught otherwise, so his expected payoff is

a1

a1 + y
(a1 + y − tmax {a1, y}) = a1

(
1− tmax {a1, y}

a1 + y

)
≤ a1

(
1− t

2

)
,

where we used max {a1, y} ≥ a1+y
2

. If he reports (x, a2) instead (in which case x ≥ ta2 for

similar reasons), then his expected payoff is

a2

x+ a2

(x+ a2 − tmax {x, a2}) ≤ a2

(
1− t

2

)
< a1

(
1− t

2

)
.

In either case, the deviation is not profitable. Types that report their second dimension

by sending message (∗, a2) in equilibrium do not have a profitable deviation either.

The last thing to check is that types that are supposed to reveal fully do not want

to pretend to be some other type. Consider type a; clearly (by monotonicity) he would

get less by sending one dimension only, (a1, ∗) or (∗, a2). Suppose he benefits from devi-

ating to (a1, y) that also reveals fully. Then type (a1, 0) should benefit even more from

reporting (a1, y), as he has the same probabilities of passing and getting caught, but lower

equilibrium payoff. However, we already showed that such type does not have a profitable

deviation. This shows that the described mechanism is valid.

In Example 2, one can think of t as a “measure of supermodularity”, with additively

separable function Z0 (a) = a1 + a2 for t = 0. Then the interpretation of this example is

that if a supermodular function is sufficiently close to an additively separable one, then

full learning is achievable for a sufficiently large set of types (this robustness result is true

10To be precise, Bayesian updating pins down beliefs only a.e., not everywhere, since conditional
expectations are defined only up to measure-zero events. However, here and for all mechanisms considered
throughout this section, there is a clear “natural” choice of beliefs at all on-path histories (distributed
over the relevant line segment with density induced by φ), so we assume without further comment that
these beliefs are employed.
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more generally, see Proposition 14). On the other hand, for supermodular functions that

are not “close”to additively separable ones, less learning may be achieved.

We next show that Example 2 is considerably more general.

5.2 Valid mechanisms with partial learning

Fix a payoff function V and distribution function Φ that has strictly positive density φ

on the support Ω = [0, L]× [0, L] for some L > 0 (L =∞ is admissible, too). We define

η = inf {η′ ≥ 0 : ∀ (a1, a2) ∈ Ω : V (a1, η
′a1) + V (η′a2, a2) ≥ V (a1, a2)} ; (6)

ξ = inf ({ξ′ ≥ 0 : ∀a1 ∈ (0, L) : E0≤a2≤ξ′a1V (a1, a2) > V (a1, ηa1)} ∪ {1}) , (7)

where E0≤a2≤zV (a1, a2) =
(∫ z

0
V (a1, a2)φ (a1, a2) da2

)
/
(∫ z

0
φ (a1, a2) da2

)
. These values

are well-defined: the set in (6) is nonempty as it contains η′ = 1 by monotonicity of V ,

which also implies η ≤ 1, and the set in (7) is nonempty because it is defined so as to

contain 1. Notice that we must have ξ ≥ η (this follows from η ≤ 1 and the fact that

E0≤a2≤ξ′a1V (a1, a2) ≤ V (a1, ηa1) for ξ′ < η by monotonicity, so the set in (7) only contains

elements with ξ′ ≥ η). As an example, if V is submodular or additively separable, then

η = 0, and ξ = 0 also as long as V is strictly increasing (this excludes boundary cases

such as V (a1, a2) = max{a1, a2}). If V = Zt (defined in (5)) with t > 0, then η = t
2
; for

V = a1a2, η = 1
2
. Moreover, in both these cases, if Φ is uniform, then ξ = min {2η, 1}.

Say that payoff function V and distribution function Φ satisfy the monotone expecta-

tion property if E0≤a2≤zV (a1, a2) is nondecreasing in a1 for any z. In other words, if an

individual’s second dimension is known not to exceed some z, he is never worse off if he is

revealed to have a high first dimension rather than a low one. For example, this property

is automatically satisfied if Φ has the two coordinates distributed independently.

The following result generalizes Example 2 beyond the case of V = Zt and Φ uniform.

Proposition 13. Suppose that V is symmetric and continuous and Φ is symmetric and

has a positive density φ(a), and the monotone expectation property is satisfied. There

exists a valid mechanism with the following properties. Types (a1, a2) such that a2 ≤
ξa1 report (a1, ∗), and dimension 1 gets verified with probability 1. Types (a1, a2) such

that a1 < ξa2 report (∗, a2), and dimension 2 gets verified with probability 1. All other

types (a1, a2) reveal fully, and verification probabilities following report (a1, a2) satisfy

p1 (a1, a2) ≥ 1− V (ηa2,a2)
V (a1,a2)

and p2 (a1, a2) ≥ 1− V (a1,ηa1)
V (a1,a2)

.

We now proceed with formulating a limit result, stating that if V is “sufficiently close”

to a submodular (in particular, additively separable) function, then almost full learning
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(in the sense of full learning for an arbitrarily large set of sender’s types) is achievable.

Proposition 14. Fix distribution Φ on [0,∞) × [0,∞), with a symmetric continuous

density φ. Let V̄ (a1, a2) be a submodular symmetric continuous function that is strictly

increasing in a1 at a1 = 0, and satisfies the monotone expectation property with respect

to Φ. Take any symmetric increasing function V (a1, a2) and consider a family of payoff

functions given by Ṽt (a1, a2) = (1− t) V̄ (a1, a2) + tV (a1, a2) for t ∈ [0, 1]. Then for any

δ > 0 there is T = T (δ) ∈ (0, 1) such that for all t ∈ (0, T ), there is a mechanism that

achieves full learning for a measure of types at least 1− δ.

5.3 Optimal mechanisms

In Proposition 14, we proved a limit result, stating that almost full learning is achievable

but without any claim to optimality of that particular mechanism. We did not discuss

the question of optimality of the mechanism constructed in Example 2 or its extension,

Proposition 13, either. We now partially address this gap by showing that, in certain cases

and within a natural class of mechanisms, this construction is indeed optimal. We define

this class for an arbitrary number of dimensions n, although we will return to n = 2 for

our optimality results.

Specifically, we will call mechanismM semi-direct if the sender is supposed to truth-

fully report some (nonempty) subvector of his type, and the receiver verifies some dimen-

sion that was reported. More precisely, M is semi-direct if:

• M is a subset of the space ([0,∞) ∪ {∗})n \ {(∗, . . . , ∗)}.

• The reporting strategy σ is deterministic. Moreover, for each type a and each

component i, either σi(a) = ai or σi(a) = ∗.

• For each message m ∈M and each i such that mi = ∗, pi(m) = 0.

The mechanism in Example 2 is an example of a semi-direct mechanism.11 We view

the definition as a relatively tractable and interpretable generalization of this example.

An additional strength of semi-direct mechanisms is the following. Recall that in

Section 2, we briefly mentioned an alternative model in which the receiver can perform

11According to our definition, no information is allowed to be transmitted along the dimensions that
are not revealed. We could imagine a variant in which the sender is offered multiple ways to express a
non-revealed (and non-verified) coordinate, but such a variant does not seem to expand the possibilities:
for example, if types (1, y) for y ∈ [0, 1] sent message (1, ∗), and those with y ∈ [2, 3] sent message (1,♦),
then the former would always be able to pass as the latter. This means that if both messages were used
in equilibrium, the corresponding sets of types would receive the same payoffs; but then we may as well
pool these types.
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verifications by asking yes-no questions of the form “is ai equal to s?” rather than asking

“what is the value of ai?” Any valid semi-direct mechanism would work equally well in

this alternative model, whereas most other indirect mechanisms would not. For instance,

Example 2 has an indirect implementation in the original model in which the sender

calculates p = a1
a1+a2

, reports p if t
1+t
≤ p ≤ 1

1+t
, and reports “low” or “high” if p < t

1+t
or

p > 1
1+t

respectively; but this indirect implementation would fail in the alternative model.

We will call a semi-direct mechanismM connected if, for each message m that is used

in equilibrium, the set of types a for which σ(a) = m is a connected subset of A. Again,

the mechanism in Example 2 satisfies this property.

Lastly, given a valid mechanism M, define U(a) to be the payoff received by type a

in equilibrium. (For notational brevity, we suppress the fact that U(a) depends on the

mechanism.) In particular, for types a that are supposed to reveal fully, U(a) = V (a).

We now specify the receiver’s objective as minimizing

W (M) = E [|V (a)− U (a)|] .

We are now ready to formulate the following proposition.

Proposition 15. Assume n = 2. Take t ∈
(

0,
√

1
2

)
and let V (a) = Zt (a) and Φ be the

uniform distribution on the square [0, L] × [0, L] for some L > 0. Then the mechanism

Mt constructed in Example 2 minimizes W (M) within the class of connected semi-direct

mechanisms (and this minimum equals W (Mt) = 1
6
t2L).

Proposition 15 suggests that building on the intuition from the main model in Section

3, we can construct optimal mechanisms for supermodular functions, at least under some

assumptions and within a certain class. We should note that for supermodular functions

that are not close to linearly additive, the optimal mechanism may look very differently.

For example, the mechanism from Example 2 for t = 1 would correspond to the sender

revealing the value of the largest dimension; indeed this is a valid mechanism that achieves

W (M1) = 1
6
L. However, the optimal mechanism looks different, as the next result shows.

Proposition 16. Let V (a1, a2) = min {a1, a2} and let Φ be uniform distribution on the

square [0, L] × [0, L] for some L > 0. Then there are exactly two mechanisms (up to

differences on measure-zero sets) that minimize W (M) within the class of connected

semi-direct mechanisms. One involves all sender types sending messages (a1, ∗), and the

other involves all types sending messages (∗, a2). In both mechanisms, W (M) = 2
15
L.

We finish this subsection by noting that the optimality results here are sensitive to

distributions and objective functions, as well as to the class of mechanisms that we allow.
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For example, for t ∈
(

0,
√

1
2

)
, one can do better than Proposition 15 in terms of W (M)

using semi-direct but not necessarily connected mechanisms. For V (a1, a2) = min {a1, a2},
the optimal mechanism from Proposition 16 does not achieve full learning for any type,

so if the objective is instead to maximize the share of types for which full learning is

achieved, one can do better. These facts (whose proofs are omitted for space, but are

available from the authors) highlight that while the methods of this paper are helpful

to construct valid mechanisms, the question of optimality is far from trivial and requires

further inquiry.

5.4 Testing multiple dimensions

In the above discussion, we have studied situations where the type cannot be fully learned

by verifying just one dimension, and asked how much can be learned. An alternative ex-

tension of our model to such situations would instead ask how many verifications are

needed if we insist on achieving full learning. We consider this version very briefly. We

return to the setting of general n (since n = 2 is not interesting if more than one verifi-

cation is allowed).

Example 3. Suppose that the type is n-dimensional, and V (x) is given by the k-th

highest coordinate of x, where k is constant, 1 ≤ k ≤ n.

If the receiver can test k dimensions, then full learning is possible. Just take a direct

mechanism, where the sender reports his type, and the receiver deterministically tests

the highest k reported coordinates (with ties broken lexicographically). This is incentive-

compatible: if the sender lies, the k-th highest of the measured coordinates is no higher

than the k-th highest of the true coordinates, and all other coordinates are believed to be

lower than the k-th highest measured value, so the lie cannot be profitable.

If the receiver can test at most k − 1 dimensions, then full learning is not possible.

Just consider the type x = (1, 1, . . . , 1, 0, . . . , 0) with k 1’s. This type has V (x) = 1. For

any type y obtained by replacing the 1 in some position i by a 0, we have V (y) = 0, so y

can gain by misreporting as x unless coordinate i is tested with probability 1. Hence, if

the sender reports x, each of the first k dimensions needs to be tested with probability 1,

otherwise full learning is not achieved.

More generally, one can ask the question about the minimal number of dimensions to

test in order to achieve full learning. The next proposition gives a lower bound for the

number of dimensions.
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Proposition 17. For every type a let k(a) be the solution to the following linear pro-

gramming problem:

min p1 + · · ·+ pn

s.t. ∀S ⊂ {1, . . . , n} , S 6= ∅ : V (a|S) ≥
(

1−
∑

j /∈S
pj

)
V (a) .

Then if k is such that k < k (a) for some a, there is no valid mechanism with k or fewer

verifications that achieves full learning.

Proposition 17 generalizes the insight that deviations are deterred by high probabilities

of getting caught, and if these probabilities cannot be “packaged” in k tests, then k tests

cannot achieve full learning. Unlike Proposition 2, there is no sufficiency result; an exact

characterization of the number of tests needed would require more understanding of how

to optimality correlate the tests across dimensions.

6 Conclusion

We considered the problem of strategic transmission of multidimensional information

between a sender and a receiver, where the receiver is able to verify at most one dimension.

If the receiver chooses this dimension without any input from the sender, she learns just

that dimension, at least if dimensions are uncorrelated. An obvious improvement is to

ask the sender which dimension to test; in this case, the receiver perfectly learns that

dimension, and the sender’s choice reveals some information about the other dimensions

as well. The main contribution of our paper is showing that if we take this logic just one

step further and allow for randomizations over tests, the receiver may learn the sender’s

type fully, for a wide range of the sender’s objective functions. While the main focus of

the theoretical results has been on direct mechanisms, we also showed that in the main

leading cases, full learning is possible using an indirect mechanism in which the sender

just chooses the probability of testing each dimension.

While the paper’s main contribution is theoretical, we believe it has practical take-

aways. In our view, the indirect mechanism, where the sender suggests probabilities to

verify each dimension, is not so far from the structure of interactions that may occur in

practice. For example, it is quite common for an interviewer to ask the job candidate to

describe a project (or, in an academic context, a paper) that he listed on the vita, with the

understanding that the candidate will proceed with the best one. But the candidate may

instead offer the interviewer to make the selection, or suggest a couple to choose from,

or he may even suggest a few and try to nudge the interviewer towards one or the other.
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Clearly, this communicates additional information about the candidate’s willingness to

talk about each project, which is very much in line with the spirit of the proposed mech-

anism. Similarly, the idea of drawing inference from choice of tests has recently gained

attention in the insurance literature, see Crocker and Zhu (2018).

The paper’s results suggest many interesting directions for further inquiry. One ques-

tion that we have only begun to address is how to identify optimal mechanisms (or even

how to formulate the optimality problem in a tractable way) when full learning is impos-

sible. For another, suppose that even offering one test is costly (as in e.g. Ben-Porath,

Dekel, and Lipman, 2014); then a direct mechanism would create commitment problems

for the receiver, who would not want to verify ex post, but the indirect mechanism, where

probabilities are communicated but not the scale, would not (at least for small cost). Ac-

tually, in this case, if full learning is achievable, it might not be optimal, since the receiver

could economize by not testing over a small range of types close to zero; a natural ques-

tion is what an optimal mechanism looks like. As another possible application, consider

a professor who wants to test her students on multiple topics. In this example, running

our proposed mechanism would consist of asking students to report their relative skills

and then administering a test with just one (randomly determined) question. This might

not be desirable, either because any single question reveals too noisy a signal, or because

the students may not know their relative skills perfectly. Here, the natural solution is

to offer several problems instead of one, which in turn poses the problem of the optimal

number of questions an exam should have, and how to choose their topics for each student

in an optimal way (see also Deb and Stewart, 2018, who study a similar question with a

one-dimensional type space).

We have seen that the basic insights from our full-learning setting have some applica-

tion even when full learning is not achievable. We may hope that these insights eventually

contribute to addressing some of these other directions as well.
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The Appendix contains the proofs of all results that are not proved in the main text.

It is organized in sections, corresponding to sections of the main text.

A Proofs for Section 3

Proof of Lemma 0. Let M = (M,σ, p, µ) be a valid mechanism that achieves full

learning. We wish to construct p′, µ′ that (together with the message space M ′ = A and

the truthful reporting strategy σ′(a) = a) form a valid direct mechanismM′ that achieves

full learning. Let p′i(a) = Em∼σ(a)[pi(m)], the expected probability with which dimension i

is verified for type a in the original mechanism. Beliefs µ′ are uniquely determined by the

criteria of full learning and punishment beliefs: at histories (a, i, ai) that can be generated

by truthful reporting, the belief is degenerate on type a; at other histories (a, i, s), it puts

probability 1 on type 0.

It is immediate from the construction that the mechanism satisfies full learning and

punishment beliefs. To see that the mechanism is valid, we check the two conditions. For

incentive compatibility, notice that if type a reports truthfully he gets a payoff of V (a),

whereas by reporting â he gets a payoff

n∑
i=1

p′i(â)V (µ′(â, i, ai)) = Em∼σ(â)

[
n∑
i=1

pi(m)V (µ′(â, i, ai))

]

≤ Em∼σ(â)

[
n∑
i=1

pi(m)V (µ(m, i, ai))

]
≤ V (a).

Here the first inequality follows from the fact that for each m ∈ supp(σ(â)) and each

i, if pi(m) > 0 then either âi = ai implying V (µ(m, i, ai)) = V (â) = V (µ′(â, i, ai)) by

full learning in the original mechanism, or âi 6= ai and V (µ′(â, i, ai)) = V (0) = 0 by

construction. The second inequality comes from incentive compatibility of the original

mechanism.

Finally, Bayesian updating is immediate, since in equilibrium, with ex ante probability

1, the receiver puts probability 1 on the true type, which equals the report. �

Proof of Proposition 2. First we show necessity. Take the weights λS as given;

we can assume λ∅ = 0, since the value of λ∅ has no effect either on the validity of the

collection of weights or on the inequality to be proven. Type a|S can, by imitating type
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a, get at least
(∑

i∈S pi(a)
)
V (a). Hence, incentive compatibility implies(∑

i∈S

pi(a)

)
V (a) ≤ V (a|S).

Now multiply by λS, and then sum over all S. On the left side, for each i = 1, . . . , n,

pi(a) appears with total weight
∑

S:i∈S λS = 1. Hence, we get(
n∑
i=1

pi(a)

)
V (a) ≤

∑
S

λSV (a|S).

The left side is just V (a), showing that the asserted condition holds.

Now we prove sufficiency. For each type a, we need to construct the appropriate veri-

fication probabilities pi(a) to discourage deviations to a. If V (a) = 0 we can choose these

probabilities arbitrarily, as clearly no type would deviate to such a. Now assume V (a) > 0.

We claim that there exist nonnegative numbers r1, . . . , rn such that r1+· · ·+rn = V (a)

and, for each subset S ⊂ {1, . . . , n},
∑

i∈S ri ≤ V (a|S).

Suppose not. Then, applying a theorem of the alternative, we get the existence of

nonnegative numbers λS, for each S ⊂ {1, . . . , n}, such that
∑

S:i∈S λS ≥ 1 for each i and∑
S λSV (a|S) < V (a).

This is almost a contradiction to our assumed condition on V , except that for each

index i, the total weight on sets containing i is ≥ 1, rather than exactly 1 as required.

However, if the inequality is strict, then we can take some of the weight on a set S

containing i and transfer it to set S\{i}. This decreases the total weight on sets containing

i, without changing the total weight on sets containing j, for any j 6= i. Iterating this, we

can eventually get the total weight on sets containing i to be exactly 1 for each i. Moreover,

each such operation can only decrease the value of
∑

S λSV (a|S), since V is monotone

and we are transferring weight from larger to smaller sets. Hence the final weights will

satisfy
∑

i∈S λS = 1 for each index i, and will still satisfy
∑

S λSV (a|S) < V (a), thus

contradicting the assumption.

This implies the desired numbers r1, . . . , rn exist. Define the verification probabilities

by pi(a) = ri/V (a). We just need to check incentive compatibility condition (1).

Suppose the sender has type a, but reports â. Let S be the set of coordinates i for

which âi = ai. Then ∑
i∈S

pi(â) =

∑
i∈S ri

V (â)
≤ V (a|S)

V (â)
≤ V (a)

V (â)
,

which is exactly what (1) requires. �
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Proof of Proposition 3. The fact that the given condition is necessary and sufficient

to achieve full learning follows from the discussion immediately preceding the proposition

statement. Similarly, this discussion shows that a direct mechanism is valid if and only

if types a|1 and a|2 are both deterred from reporting as type a, for each a. The relevant

incentive constraints are V (a|1) ≥ p1(a)V (a) = (1−p2(a))V (a) and V (a|2) ≥ p2(a)V (a) =

(1−p1(a))V (a), which are equivalent to the conditions given in the proposition statement.

�

Proof of Proposition 4. Let us prove that the proposed mechanism is incentive

compatible. If the sender has type a and reports truthfully, he evidently gets V (a). If

he falsely reports â, then he gets the reward V (â) only if the verified dimension i is such

that âi = ai; let S be the set of such indices i. Using the notation a|S as in the text, the

sender’s expected payoff from misreporting is

∑
i∈S

V (â|[i])− V (â|[i−1])

V (â)
V (â) =

∑
i∈S

(V (â|[i])− V (â|[i−1]))

≤
∑
i∈S

(V ((a|S)|[i])− V ((a|S)|[i−1]))

= V (a|S)

≤ V (a).

Here the first inequality is by submodularity, and the second is because V is increasing.

So, there is no incentive to lie. �

Proof of Lemma 6. It is not hard to see that a(q, t) is continuous in q. Now,

consider any t > 0. As noted in the main text, V (a(q, t)) = t for any probability vector

q. Let ∆n denote the probability simplex {(q1, . . . , qn) | qi ≥ 0 and
∑

i qi = 1}. Define a

function G : A \ {0} → ∆n by rescaling: Gi(a1, . . . , an) = ai/(a1 + · · · + an). Now define

F : ∆n → ∆n by F (q) = G(a(q, t)). This is a continuous map from the simplex ∆n to

itself. Moreover, for each coordinate i, it sends the face qi = 0 of the simplex to itself,

since qi = 0 implies ∂ai(q, t)/∂t = 0 and therefore ai(q, t) = 0 for each t. A result in

topology (e.g. Jamison and Ruckle 1976, Lemma 2.1) then implies that F is surjective.

Now to prove the lemma, consider any type a 6= 0 (the lemma statement is trivial for

a = 0) and put t = V (a) in the above. So by surjectivity, there exists some q such that

G(a(q, t)) = F (q) = G(a), or equivalently, a(q, t) = λa for some λ > 0. Moreover, as noted

in the main text, V (a(q, t)) = t. Thus, combining, we get V (a) = t = V (a(q, t)) = V (λa).

However, since V is strictly increasing, this equality can only hold if λ = 1. Thus we have
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shown existence of q and t satisfying a(q, t) = a, proving the lemma. �

We now give a proof of Proposition 7. After the general proof, we give a more explicit

version for the case n = 2 to illustrate more clearly the role of the submodularity condition.

The key to the proof of Proposition 7 is the lemma below:

Lemma A1. Let W : [0,∞)n → R be submodular and continuously differentiable. Write

Wi for the derivative with respect to coordinate i. Suppose, moreover, that Wi(t, t, . . . , t) =

0 for all t and each i.

Then, for any t1, . . . , tn ∈ [0,∞) and for each coordinate index i,

W (ti, ti, . . . , ti) ≤ W (t1, t2, . . . , tn).

Proof. It suffices to prove the lemma under the assumption that t1 ≤ t2 ≤ · · · ≤ tn;

the general statement will then follow by permuting coordinates. Also, it suffices to prove

the lemma for i = n, and the statement for any other i will follow. This is because

W (t, t, . . . , t) is constant as a function of t (since its total derivative with respect to t is∑
iWi(t, t, . . . , t) = 0).

Define a sequence of n-vectors by

v1 = (t1, t2, t3, . . . , tn−1, tn)

v2 = (t2, t2, t3, . . . , tn−1, tn)

v3 = (t3, t3, t3, . . . , tn−1, tn)

...

vn = (tn, tn, tn, . . . , tn, tn).

Now, for each i with 1 ≤ i < n,

W (vi+1)−W (vi) =

∫ ti+1

ti

 d
dt
W (t, t, . . . , t︸ ︷︷ ︸

i

, ti+1, . . . , tn)

 dt

=

∫ ti+1

ti

 i∑
j=1

Wj(t, t, . . . , t︸ ︷︷ ︸
i

, ti+1, . . . , tn)

 dt

≤
∫ ti+1

ti

[
i∑

j=1

Wj(t, t, . . . , t)

]
dt

= 0.
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Here, the inequality holds because submodularity implies that each term Wj increases

when the k-th argument (for k > i) is decreased from tk to t ≤ ti+1.

Consequently,

W (vn) ≤ W (vn−1) ≤ · · · ≤ W (v2) ≤ W (v1),

which is exactly what we wanted. �

Proof of Proposition 7. Full learning and Bayesian updating are immediate, so we

just need to check that incentive compatibility is satisfied. That is, for any probability

vector q = (q1, . . . , qn), we check that no type a would gain by reporting q instead of

following his intended reporting strategy.

Now, for any nonnegative numbers t1, . . . , tn, write

W (t1, t2, . . . , tn) = V (a1(q, t1), a2(q, t2), . . . , an(q, tn))−
n∑
i=1

qiti.

This function is submodular in (t1, . . . , tn): the V (· · · ) term is a submodular function

because it is obtained from the submodular function V by a monotone reparameterization

of each coordinate; and the remaining terms are additively separable. Moreover, W is

continuously differentiable, with derivatives

∂W

∂ti
=

[
Vi(a1(q, t1), . . . , an(q, tn)) · ∂ai

∂t

∣∣∣∣
(q,ti)

]
− qi.

In particular, when all ti are equal to the same value t, we get

∂W

∂ti

∣∣∣∣
(t,t,...,t)

= Vi(a(q, t)) · ∂ai
∂t

∣∣∣∣
(q,t)

− qi = 0.

Hence Lemma A1 applies to W . For each i, apply the lemma, then multiply both sides

by qi, and sum over i. We get

n∑
i=1

qiW (ti, . . . , ti) ≤ W (t1, . . . , tn). (A1)

Noting thatW (ti, . . . , ti) = V (a(q, ti))−ti, andW (t1, . . . , tn) = V (a1(q, t1), . . . , an(q, tn))−∑
i qiti, we can add

∑
i qiti to both sides of (A1) to obtain

n∑
i=1

qiV (a(q, ti)) ≤ V (a1(q, t1), . . . , an(q, tn)). (A2)
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This holds for all t1, . . . , tn.

Finally, suppose a type a sends message q. Let S be the set of coordinates i such that

qi > 0. For each i ∈ S, let ti be the value such that ai(q, ti) = ai (we observed in the text

that such a value exists and is unique). Then, if dimension i is verified, the sender will be

believed to be type a(q, ti), and so will get payoff V (a(q, ti)). For any i /∈ S, dimension

i will not be verified; we may take ti arbitrary. Then, the left side of (A2) equals the

expected payoff that the sender gets by sending message q. Meanwhile, the right side of

(A2) equals V (a|S) ≤ V (a). Hence, the deviation gives a payoff of at most V (a), the

payoff to following the prescribed strategy. �

For more intuition about the role of submodularity in the argument, consider the

special case of n = 2. Then reporting a probability vector is equivalent to reporting a

single number q = q1. Suppose that a particular type (a1, a2) deviates to reporting q that

is higher than what he is supposed to report in equilibrium, so that the true type lies

below and to the right of the q-curve for the reported q. If dimension 1 is tested, the

sender is believed to be (a′1, a2) lying on the q-curve with a′1 < a1, thereby getting lower

payoff than by telling the truth; if dimension 2 is tested, he is believed to be (a1, a
′
2) with

a′2 > a2, for a gain in payoff. The magnitude of the gain, V (a1, a
′
2) − V (a1, a2), can be

written as the integral of V2 on the line segment from (a1, a2) to (a1, a
′
2). Submodularity

means that V2 is decreasing in the a1-coordinate, so this gain is bounded above by a

corresponding weighted integral of V2 on the q-curve from (a′1, a2) to (a1, a
′
2). Similarly,

the net gain if dimension 1 is tested (which is negative) can be written as the integral

of V1 on a horizontal line segment, which (again by submodularity) is bounded above by

a weighted integral of V1 on this same segment of the q-curve. When we add these two

derivatives, and use the differential equation defining the q-curve, they cancel out exactly;

thus, the overall net gain from misreporting is at most zero.

More precisely, for any probability q = q1 ∈ (0, 1), define function y ≡ fq (x) as the

solution to the differential equation

dy

dx
=

1− q
q

V1 (x, y)

V2 (x, y)

with the initial condition y (0) = 0; notice that this defines the same curve as (4). Denote

its inverse by gq (·). Now consider sender of type (a1, a2); if he were truthful, he would

report q such that a2 = fq (a1). Suppose he reports probability q ∈ (0, 1) such that

a2 < fq (a1) instead (the opposite case is analogous). If tested on dimension 1, he will be

believed to be type (a1, fq (a1)), and if tested on dimension 2, he will be believed to be
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type (gq (a2) , a2). Thus, in the first case, he would get, in expectation, a gain in utility

q (V (a1, fq (a1))− V (a1, a2)) = q

∫ fq(a1)

a2

V2 (a1, y) dy

≤ q

∫ fq(a1)

a2

V2 (gq (y) , y) dy,

where we used submodularity of V and the fact that gq (y) ≤ a1 for y ∈ [a2, fq (a1)]. In

the second case, the expected net change in utility is

(1− q) (V (gq (a2) , a2)− V (a1, a2)) = − (1− q)
∫ a1

gq(a2)

V1 (x, a2) dx

≤ − (1− q)
∫ a1

gq(a2)

V1 (x, fq (x)) dx,

where we again used submodularity of V and the fact that fq (x) > a2 for all x. However,

using substitution y = fq (x) and the definition of function fq (·), we get that these two

upper bounds are equal in absolute value and opposite in sign, so the deviation cannot

be profitable.

Finally, we formalize the claim in Footnote 5, that full learning of V (a) implies full

learning of a is possible. For this we must return to the original formulation of the model,

where posterior beliefs are non-degenerate, and V is defined on ∆(A). We need an extra

assumption: Say that V respects constant values if, for every constant c, if µ is any

distribution on A such that V (a) = c for all a in the support of µ, then V (µ) = c as well.

Say that an (indirect) mechanism achieves full learning of V (a) if, for every type a,

every history h ∈ H(a|M), and every a′ ∈ supp(µ(h)), we have V (a′) = V (a).

Proposition A2. Assume that V respects constant values. If there exists an indirect

mechanism that achieves full learning of V (a), then there exists a direct mechanism with

full learning of a.

Proof. Let M = (M,σ, p, µ) be the mechanism that achieves full learning of V (a).

We now repeat the proof of Lemma 0. The same proof goes through, except for two

adjustments: in the step that originally applied full learning for the original mechanism,

we now apply full learning of V (a) together with respecting constant values; and the fact

that type a receives equilibrium payoff V (a) in the original mechanism also uses these two

properties. �
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B Proofs for Section 4

Proof of Proposition 8. As a preliminary, we should give the appropriate formulation

of the incentive constraint (analogous to (1)) for direct mechanisms in this model. If type

z reports a and is tested on dimension i for which ai 6= zi, trusted verification implies

that he necessarily receives a payoff of at least V (z|i) (and indeed, this can be done using

the belief that places probability 1 on this type). Thus, a verification strategy p(a) can

be part of a valid direct mechanism with full learning if and only if

V (z) ≥
n∑
i=1

pi(a)wi(a|z), where wi(a|z) =

{
V (a) if zi = ai

V (z|i) if zi 6= ai
(B1)

for all a and z.

Now we proceed to prove existence of the desired direct mechanism. The approach

is non-constructive. For each type a, we show that there exist corresponding verification

probabilities pi(a) that satisfy (B1) for all z. By doing this for every a, we form an

incentive compatible mechanism.

So fix a type a henceforth. Consider any particular verification probabilities p =

(p1, . . . , pn) that sum to 1. Notice that the function

Up(a|z) =
n∑
i=1

pi(a)wi(a|z)

is additively separable in the components of z. Therefore, the gain to type z from misre-

porting as a,

Gp (z) = Up(a|z)− V (z),

is supermodular in z.

Notice first that we can reduce the problem to showing existence of p such thatGp (z) ≤
0 for all z ≤ a. Indeed, suppose that this is true, but there is some x 6≤ a with Gp (x) > 0.

Then supermodularity of Gp (·) implies that Gp (a ∧ x)+Gp (a ∨ x) ≥ Gp (a)+Gp (x) > 0,

since Gp (a) = 0 (here, ∧,∨ are the componentwise min and max operations). But

a∧x ≤ a, which by assertion satisfies Gp(a∧x) ≤ 0; and Gp(a∨x) ≤ 0 because a∨x ≥ a

implies V (a ∨ x) ≥ V (a), so type a ∨ x cannot gain from the deviation. Contradiction.

Hereinafter, we consider z ∈ B = {z ∈ A : z ≤ a}, and use ∆ to denote the (n − 1)-

dimensional unit simplex. Suppose, to obtain a contradiction, that for every p ∈ ∆ there

is z ∈ B such that Gp (z) > 0.

For each p ∈ ∆, let lp = supz∈B Gp (z). We then have lp > 0 for all p, and since Gp (z)
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is a continuous function of p for any fixed z (moreover, it is Lipschitz continuous with

coefficient V (a)), lp is also a continuous function of p. Now, for any p, let

Dp =

{
z ∈ B : Gp (z) >

n+ 1

n+ 2
lp

}
;

in other words, Dp is the set of z such that the gain from deviation to a is sufficiently

close to the supremum. By definition of lp, Dp 6= ∅ for all p.

For each i ∈ {1, . . . , n}, define

Ri = {p ∈ ∆ : ∃z ∈ Dp : zi = ai} .

Let us show that Ri 6= ∅ for any i. To do that, we show that 1|i ∈ Ri (here 1|i means

putting probability 1 on component i). Indeed, suppose 1|i /∈ Ri, then for all z ∈ D1|i ,

zi < ai, and by definition of Gp (z), we have G1|i (z) ≤ 0. However, this is impossible for

z ∈ D1|i by definition of Dp; this contradiction shows that indeed 1|i ∈ Ri.

Introduce the following notation. Let ‖·‖ denote the sup-norm on Rn, and let d (x, Y )

be the distance from point x to nonempty set Y :

d (x, Y ) = inf
y∈Y
‖x− y‖ .

Now for any ε ≥ 0 and nonempty Y ⊂ ∆, let N (Y, ε) be the closed ε-neighborhood of set

Y , i.e.,

N (Y, ε) = {p ∈ ∆ : d (p, Y ) ≤ ε} .

Consistently with this definition, N (Y, 0) = Y , the closure of Y (which equals Y if Y is

closed).

Let us now show that
⋂n
i=1 Ri = ∅. Suppose not, then there is some p ∈

⋂n
i=1Ri.

Take ε ∈
(

0, 1
n(n+1)

lp
V (a)+1

]
such that for any r ∈ N ({p} , ε), lr ≥ n(n+2)

(n+1)2
lp; this is possible

because lp is continuous (and the coefficient is smaller than 1). Since p ∈
⋂n
i=1Ri, for each

i ∈ {1, . . . , n} there is p(i) ∈ N ({p} , ε)∩Ri; by definition ofRi we can then take z(i) ∈ Dp(i)

such that z
(i)
i = ai. By definition of Dp(i) , we have Gp(i)

(
z(i)
)
> n+1

n+2
lp(i) ≥ n

n+1
lp. By
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Lipschitz continuity of Gp

(
z(i)
)

as a function of p (with coefficient V (a)), we have

Gp

(
z(i)
)
≥ Gp(i)

(
z(i)
)
− V (a)

∥∥p− p(i)
∥∥

>
n

n+ 1
lp − V (a)

1

n (n+ 1)

lp
V (a) + 1

>

(
n

n+ 1
− 1

n (n+ 1)

)
lp =

n− 1

n
lp.

Denote, for any k ∈ {1, . . . , n}, y(k) =
∨k
i=1 z

(i); in particular, y(1) = z(1). Let us now show,

by induction, that Gp

(
y(k)
)
> n−k

n
lp. Indeed, the base case k = 1 is already established.

Suppose that Gp

(
y(k−1)

)
> n−(k−1)

n
lp, then we have by supermodularity

Gp

(
y(k)
)

= Gp

(
y(k−1) ∨ z(k)

)
≥ Gp

(
y(k−1)

)
+Gp

(
z(k)
)
−Gp

(
y(k−1) ∧ z(k)

)
>

n− (k − 1)

n
lp +

n− 1

n
lp − lp =

n− k
n

lp,

where we used Gp

(
y(k−1) ∧ z(k)

)
≤ lp by definition of lp. This proves the induction step.

Now, taking k = n, we have Gp

(
y(n)
)
> 0. However, y(n) = a, and we get a contradiction,

since Gp (a) = 0. This contradiction shows that such p cannot exist, so
⋂n
i=1 Ri = ∅.

Now for every p ∈ ∆, define Ep = {q ∈ ∆ : Gq (x) ≤ 0 for all x ∈ Dp}. In other words,

Ep is the set of probabilities that make deviation to a unprofitable for all types x ∈ Dp.

If we can prove existence of p such that p ∈ Ep (i.e., a fixed point of mapping p 7→ Ep),

then we will reach a contradiction that proves the result. Notice that for every p ∈ ∆, Ep

is closed and convex, because it is the intersection of closed convex sets given by linear

inequalities. Also, for every p ∈ ∆, Ep is nonempty, because p /∈ Ri for some Ri (indeed,

we showed that
⋂n
i=1Ri = ∅, so

⋂n
i=1Ri = ∅ as well), in which case vector 1|i ∈ Ep. If

the correspondence Ep were upper-hemicontinuous, we would immediately get existence

of a fixed point by Kakutani’s theorem. Unfortunately, this might not be true.

Define

h = inf
p∈∆

max
i∈{1,...,n}

d (p,Ri) ;

for each p the maximum is finite and well-defined, because each Ri 6= ∅. Let us show

that h > 0. Since the infimum is taken over a compact set and the function d (p,Ri) is

continuous in p, it is achieved for some p ∈ ∆. If h = 0, then d (p,Ri) = 0 for all i, and

thus p ∈ Ri for all Ri. But we showed that
⋂n
i=1 Ri = ∅, which yields a contradiction that

proves that h > 0. This implies, in particular, that for every point p ∈ ∆, there is i ∈
{1, . . . , n} such that within the h

2
-neighborhood of p there are no points belonging to Ri.
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For each p ∈ ∆, introduce the set Qp given by:

Qp =
⋂
q∈∆

N

(
Eq,

2

h
‖p− q‖

)
.

We establish the following properties.

First, for every p, Qp ⊂ Ep, because for q = p, N
(
Eq,

2
h
‖p− q‖

)
= N (Ep, 0) = Ep =

Ep, since Ep is closed.

Second, for every p, Qp is convex, because it is the intersection of convex sets (N (Y, ε)

is convex for any ε if Y is convex, and Eq is convex for each q).

Third, let Q ⊂ ∆×∆ be the graph of mapping p 7→ Qp, i.e.,

Q = {(p, r) ∈ ∆×∆ : r ∈ Qp} ;

then Q is closed. To see this, notice that

Q =
⋃
p∈∆

⋂
q∈∆

{
(p, r) : r ∈ N

(
Eq,

2

h
‖p− q‖

)}
=

⋂
q∈∆

⋃
p∈∆

{
(p, r) : r ∈ N

(
Eq,

2

h
‖p− q‖

)}
.

But for each q, the mapping p 7→ N
(
Eq,

2
h
‖p− q‖

)
has a closed graph (this is a continuous

set-valued mapping), and thus Q is closed as an intersection of closed sets.

Fourth, for every p ∈ ∆, Qp is nonempty. Indeed, from the definition of h it follows

that there is i ∈ {1, . . . , n} such that q ∈ N
(
{p} , h

2

)
implies q /∈ Ri, and in particular

p /∈ Ri. Let us show that the vector 1|i ∈ Qp. To do this, we need to show that for every

q ∈ ∆,

1|i ∈ N
(
Eq,

2

h
‖p− q‖

)
.

If q ∈ N
(
{p} , h

2

)
, we have q /∈ Ri, which implies 1|i ∈ Eq, which establishes the required

inclusion for such q. In the complementary case, q /∈ N
(
{p} , h

2

)
, we have ‖p− q‖ > h

2
, and

thus N
(
Eq,

2
h
‖p− q‖

)
= ∆ (since Eq is nonempty and the maximum distance between

two points in ∆ is 1). So the required inclusion is satisfied in this case as well. Since it

holds for every q, this proves that 1|i ∈ Qp, so Qp 6= ∅ for any p ∈ ∆.

Now, the second, third, and fourth properties show that the mapping p 7→ Qp satisfies

the requirements of Kakutani’s fixed-point theorem. Therefore, there is p ∈ ∆ such that

p ∈ Qp. The first property now implies that this p ∈ Ep. Therefore, the mapping p 7→ Ep
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has a fixed point. We have that for all x ∈ Dp, Gp (x) ≤ 0, which contradicts the definition

of Dp. This contradiction completes the proof. �

Proof of Proposition 9. To show necessity: Suppose such a mechanism exists. Fix

a type a = (a1, a2). Suppose that when a follows his equilibrium strategy,12 dimensions

1 and 2 are checked with probability p1 and p2 respectively. Now consider any x1 < a1

and x2 < a2. If type (a1, x2) follows the strategy of type a, with probability p1 he is

believed to be a (due to full learning) and receives payoff V (a); with probability p2 =

1 − p1 he is believed to be at least (0, x2) (due to trusted verification). If he instead

follows his equilibrium strategy then, by full learning, his payoff is V (a1, x2). So incentive

compatibility requires

p1V (a) + (1− p1)V (0, x2) ≤ V (a1, x2) . (B2)

Similarly, the incentive of type (x1, a2) gives

p1V (x1, 0) + (1− p1)V (a) ≤ V (x1, a2) . (B3)

The first equation implies p1 ≤ V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

(note if the denominator is 0, then by

monotonicity V (a) = V (a1, x2) = V (0, x2) and the numerator is also 0). The second

likewise implies p1 ≥ V (a)−V (x1,a2)
V (a)−V (x1,0)

. We thus have V (a)−V (x1,a2)
V (a)−V (x1,0)

≤ V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

. Cross-

multiplying gives

(V (a)− V (x1, a2))(V (a)− V (0, x2)) ≤ (V (a)− V (x1, 0))(V (a1, x2)− V (0, x2)),

which also holds in either of the zero-denominator cases (since both sides are then zero).

Adding (V (a) − V (x1, a2))(V (0, x2) − V (a1, x2)) to both sides gives the condition in the

proposition.

To show sufficiency: Suppose the condition holds for all x, a ∈ A such that x < a. We

will construct a direct mechanism that achieves full learning: as argued in the proof of

Proposition 8, it suffices to find verification probabilities satisfying (B1).

Fix a, and let us find probability p1 such that if a report of a leads to verification

probabilities p1(a) = p1, p2(a) = 1−p1, this deters all deviations to a. Note that deviation

by types x with x1 6= a1 and x2 6= a2 is automatically deterred, since the deviation will

always be detected and the sender will be believed to be either (x1, 0) or (0, x2), both of

which are worse than truth-telling. Moreover, types (x1, a2) with x1 > a1 cannot benefit

12In fact, one can formulate a revelation principle (analogous to Lemma 0) under the restriction of
trusted verification. For brevity, we omit a formal statement.
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from deviating to a since the truth-telling payoff is V (x1, a2) ≥ V (a); likewise for types

(a1, x2) with x2 > a2. So we need only worry about deviations by types (x1, a2) with

x1 < a1 or (a1, x2) with x2 < a2.

Notice that if V (a) = V (x1, 0) for some x < a, then p1 = 1 will work (monotonicity

implies V (a1, x2) = V (a) for all x2 < a2, so none of these types gains from deviating,

and types (x1, a2) will be caught with certainty). Similarly, if V (a) − V (0, x2) for some

x < a, then p1 = 0 will work. Thus, we may assume that for any x < a, V (a) > V (x1, 0)

and V (a) > V (0, x2). Again rearranging the terms, the inequality in the proposition

statement implies
V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Since the left-hand side depends on x1 only and right-hand side depends on x2 only, we

have

sup
x1

V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ inf

x2

V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Now if we take p1 ∈
[
supx1

V (a)−V (x1,a2)
V (a)−V (x1,0)

, infx2
V (a1,x2)−V (0,x2)
V (a)−V (0,x2)

]
, we will have that for any x1

and any x2,
V (a)− V (x1, a2)

V (a)− V (x1, 0)
≤ p1 ≤

V (a1, x2)− V (0, x2)

V (a)− V (0, x2)
.

Rearranging brings us back to conditions (B2)–(B3), which coincide with the incentive

constraints (B1) for types (a1, x2) and (x1, a2). So deviations to a by these types are

deterred. �

Proof of Proposition 10. We just need to check that if condition (1) is satisfied for

the function V , then it is also satisfied for V ′ = U ◦V . For any a, â, put λ =
∑

i:âi=ai
pi(â);

thus λ ∈ [0, 1]. Condition (1) says that V (a) ≥ λV (â). Then,

U(V (a)) ≥ U(λV (â)) ≥ λU(V (â))

where the first inequality is because U is increasing and the second is because U is concave

(and must map 0 to 0 in order for U ◦ V to be an allowable payoff function). Thus, (1)

holds for U ◦ V . �

Proof of Proposition 11. Let Ṽ (a) = V (a; a). By Proposition 2, there is a valid

direct mechanism that achieves full learning for payoff function Ṽ (a); denote such a mech-

anism by M. Let us show that this same mechanism would remain incentive compatible

if the payoffs of type x if he is believed to be type a were given by V (a;x).

Suppose not, so that some type x prefers to deviate and report type a 6= x. This
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immediately implies V (a;x) > V (x;x), for otherwise this deviation would not have

any upside. Since we assumed that V (a;x) ≤ max {V (a; a), V (x;x)}, it must be that

V (a;x) ≤ V (a; a). Given that M is a valid mechanism for the payoff function Ṽ (a), it

must be that

Ṽ (x) ≥

( ∑
i: ai=xi

pi(a)

)
Ṽ (a) +

( ∑
i: ai 6=xi

pi(a)

)
Ṽ (0).

(the last term Ṽ (0) is zero, but we spelled it out). Since V (a;x) ≤ V (a; a) = Ṽ (a) and

V (0;x) = Ṽ (0), this implies

V (x;x) ≥

( ∑
i: ai=xi

pi(a)

)
V (a;x) +

( ∑
i: ai 6=xi

pi(a)

)
V (0;x);

in other words, the deviation to reporting a is not profitable. This proves that M is a

valid mechanism. �

The following auxiliary result will be used in the proof of Proposition 12.

Lemma B1. Let q1, . . . , qn, m1, . . . ,mn and t1, . . . , tn be positive numbers such that tj <

mj for all j, and
∑

j qj =
∑

jmj = 1. Put t =
∑

j tj. Then,(∑
j

(mj − tj)
(
qj
mj

)1−t
)∏

j

(
qj
mj

)tj
≤ 1− t.

Proof. Note that for each i, we have

(mi − ti)
(
qi
mi

)1−t∏
j

(
qj
mj

)tj
≤ (mi − ti)

[
(1− t) qi

mi

+
∑
j

tj
qj
mj

]

by the AM-GM inequality. Sum over i = 1, . . . , n. On the right-hand side, each qi/mi

appears with coefficient

(mi − ti)(1− t) +
∑
j

(mj − tj)ti = (mi − ti)(1− t) + (1− t)ti = mi(1− t).

So the right-hand side simplifies to
∑

imi(1− t)(qi/mi) = (1− t)
∑

i qi = 1 − t, and the

lemma follows.

Proof of Proposition 12. We start by formalizing the problem: given a mechanism

and a noise parameter χ, define the posterior measure κ (a) on any measurable A′ ⊂ AK
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by

κχ (a) (A′) = Em∼σ(a)

[
n∑
i=1

pi(m)

∫ ∞
0

µ(m, i, s)(A′) dρi(s|ai)

]
,

where ρi(s|ai) is lognormal with log s ∼ N
(

log ai,
1
χ

)
. We will show that, when the

mechanism is chosen to depend on χ as in the proposition statement, then κχ (a) converges

to a for all a ∈ AK as χ→∞, and the mechanism is valid.

Let us first present the proof assuming γ = 1. We will consider γ ∈ (0, 1) in the end

of the proof.

We have defined Mχ and pχ in the text. We have also defined σχ(a) for types a ∈ AK .

This allows us to define beliefs µχ(h) ∈ ∆(AK) by Bayesian updating. Below, we will

give an explicit formula for µχ. This then completes the definition of the mechanism,

except for one detail: the formal definition of a mechanism requires specifying σχ(a) for

every type a ∈ A, not just for types a ∈ AK . However, we can subsequently assign

to each type a /∈ AK whatever message maximizes its expected payoff (the maximum

exists by continuity arguments); since these types collectively have probability zero, this

assumption does not affect the Bayesian updating. The mechanism is then completely

defined. We will then show that the resulting mechanism is incentive-compatible, i.e., a

valid mechanism; and we will establish the convergence property.

Let qi = ai∑n
j=1 aj

= ai
V (a)

be the relative skills of the sender. Suppose that the receiver

got message m and treats it as truthfully reflecting the relative skills of the sender, m = q.

Conditional on this information, the posterior distribution of V (a) is lognormal, so that

(log V (ã) | m) ∼ N
(∑n

i=1
τi
τ

(νi − logmi) ,
1
τ

)
. (Hereinafter we write ã for the unknown

type that is a random variable from the receiver’s point of view, and a for the true type.)

This follows from the following calculation: the conditional density of (log V (ã) | m)
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at point z is equal to:∏n
i=1

√
τi
2π

exp
(
−1

2

∑n
i=1 τi (z + logmi − νi)2)

+∞∫
−∞

∏n
i=1

√
τi
2π

exp
(
−1

2

∑n
i=1 τi (λ+ logmi − νi)2) dλ

=
exp

(
−1

2

∑n
i=1 τi (z + logmi − νi)2)

+∞∫
−∞

exp
(
−1

2

∑n
i=1 τi (λ+ logmi − νi)2) dλ

=

exp

(
− τ

2

((
z −

n∑
i=1

τi(νi−logmi)
τ

)2

+
n∑
i=1

τi(νi−logmi)
2

τ
−
(

n∑
i=1

τi(νi−logmi)
τ

)2
))

+∞∫
−∞

exp

(
− τ

2

((
λ−

n∑
i=1

τi(νi−logmi)
τ

)2

+
n∑
i=1

τi(νi−logmi)
2

τ
−
(

n∑
i=1

τi(νi−logmi)
τ

)2
))

dλ

=

√
τ

2π
exp

(
−1

2
τ

(
z −

n∑
i=1

τi
τ

(νi − logmi)

)2
)

√
τ

2π

+∞∫
−∞

exp

(
−1

2
τ

(
λ−

n∑
i=1

τi
τ

(νi − logmi)

)2
)
dλ

=

√
τ

2π
exp

(
−1

2
τ

(
z −

n∑
i=1

τi
τ

(νi − logmi)

))
.

Now suppose that the receiver tested dimension i and got signal s = aiη = V (a)miη.

Conditional on m being equal to q as assumed by the receiver so far, s has lognormal

distribution, with log s = (log V (a) | m) + logmi + log η. Thus, log s− logmi is a signal

of the unknown value (log V (ã) | m) with precision χ. Thus, we have that the posterior

of V (ã) is lognormal, with

(log V (ã) | m, i, s) ∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) ,

1

τ + χ

)
.

This pins down the belief µχ(m, i, s): it is a (one-dimensional) lognormal distribution on

the ray of types whose relative skills agree with m; the parameters of this lognormal are

as indicated above. This completes the description of the mechanism, as indicated above.

Notice that this formula for beliefs implies the convergence part of the Proposition.

Indeed, for a truthful report by the sender of a given type a, mi = qi = ai
V (a)

and log s−
logmi = log V (a) + log η. For a fixed η (equivalently, fixed s), (log V (ã) | m, i, s) may be

thought of as a sum of a variable distributed asN

(
τ

τ+χ

n∑
j=1

τj
τ

(νj − logmj) + χ
τ+χ

log V (a) , 1
τ+χ

)
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and a constant χ
τ+χ

log η. Therefore, if we take the expectation over realizations of s

(equivalently, η), we get

Es [log V (ã) | m, i, s] ∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
log V (a) ,

τ + 2χ

(τ + χ)2

)
;

we used that χ
τ+χ

log η is normal with expectation 0 and variance
(

χ
τ+χ

)2
1
χ

= χ

(τ+χ)2
. For

each given i, this distribution converges to an atom on log V (a) as χ→∞; furthermore,

note that the distribution actually is the same for all i. This proves that following truthful

report m = q, the expected posterior over log V (ã) (averaged over both i and s) converges

to an atom in log V (a). Since there is no uncertainty about the relative skills (they are

given by m), the convergence of κ(a) follows.

It remains to prove that the constructed mechanism is incentive compatible for the

sender. For a given realization of i and s, the sender who sent message m (not necessarily

truthfully!) expects to get a payoff equal to

E [V (ã) | m, i, s] = exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) +

1

2

1

τ + χ

)
,

since this is the expectation of exponent of (log V (ã) | m, i, s), which is normally dis-

tributed. Now, continuing to write a for the true type, and taking expectation over

possible realizations of s (or, equivalently, over η), we get

exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

2χ+ τ

(χ+ τ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j .
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Indeed, we have

Eη exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai + log η − logmi) +

1

2

1

τ + χ

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

1

τ + χ

)
Eη exp

(
χ

τ + χ
log η

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

1

τ + χ
+

1

2

χ

(τ + χ)2

)

= exp

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log ai − logmi) +

1

2

τ + 2χ

(τ + χ)2

)

= exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j .

Therefore, his expected payoff from sending message m equals

n∑
i=1

pi (m) exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j

= C ×
n∑
i=1

(
mi

(
1 +

τ

χ

)
− τi
χ

)(
ai
mi

) χ
τ+χ

n∏
j=1

m
−

τj
τ+χ

j

= C ×H (m) ,

where

C = exp

(
1

τ + χ

n∑
j=1

τjνj +
1

2

τ + 2χ

(τ + χ)2

)
,

H(m) =

(
n∏
j=1

m
−

τj
τ+χ

j

)(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) χ
τ+χ

)
.

Now, we need to prove that it is indeed optimal to send message m = q, with qi =
ai∑n
j=1 aj

. Since the C factor is a constant, we need to prove that

q ∈ arg max
m∈M

H (m) .

We apply Lemma B1 to {qj} and {mj}, taking tj = τj/(τ + χ) (so t = τ/(τ + χ)). Take

the resulting inequality and multiply both sides by τ+χ
χ

(∑
j aj

) χ
τ+χ

(∏
j q
−

τj
τ+χ

j

)
. Then
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the left side equals H(m), and the right side equals
(∑

j aj

)(∏
j a
−

τj
τ+χ

j

)
= H(q). This

shows that H(m) ≤ H(q) for all m, so it is optimal to report the true relative skills, i.e.

the mechanism is incentive-compatible. This completes the proof for γ = 1.

Now suppose that γ ∈ (0, 1). The mechanism is exactly the same as before. We just

need to check that it remains incentive-compatible. The proof follows the same steps

as the previous case. The following argument highlights one additional step needed to

complete the proof.

As in the previous case, we can show that the posterior distribution of
∑n

i=1 ãi =

V (ã)1/γ is given by

(
log V (ã)1/γ | m, i, s

)
∼ N

(
τ

τ + χ

n∑
j=1

τj
τ

(νj − logmj) +
χ

τ + χ
(log s− logmi) ,

1

τ + χ

)
.

We then use similar steps to reduce incentive-compatibility to showing that the true vector

q of relative skills satisfies

q ∈ arg max
m∈M

Hγ (m) ,

where

Hγ(m) =

(
n∏
j=1

m
−
γτj
τ+χ

j

)(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) γχ
τ+χ

)
.

To show this, we take notice that Hγ (m) ≤ (H (m))γ for all m; indeed,(
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) χ
τ+χ

)γ

≥
n∑
j=1

(
mj

(
1 +

τ

χ

)
− τj
χ

)(
aj
mj

) γχ
τ+χ

by concavity of the power function for γ ∈ (0, 1). At the same time, Hγ (q) = H (q)γ,

because
aj
qj

= (V (a))1/γ, which is a constant. Thus, the inequality H(m) ≤ H(q), which

was established earlier in the proof, implies

Hγ (m) ≤ (H (m))γ ≤ (H (q))γ = Hγ (q) ,

thus establishing incentive compatibility. This completes the proof. �
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C Proofs for Section 5

Proof of Proposition 13. We consider the following cases. If ξ = 0, then η = 0 as

well. The mechanism described therefore achieves full learning, and the fact that this

mechanism is valid follows immediately from Proposition 3.

If ξ = 1, then for any a either a2 ≤ ξa1 or a1 < ξa2, so the set of types that report

truthfully is empty. Consider any type (a1, a2) with a2 ≤ a1. If he reports (x, ∗) with

x 6= a1, then he will be caught for sure; the same is true if he reports (∗, y) with y 6= a2.

The remaining deviation to consider is deviating to reporting his true a2, that is, sending

message (∗, a2). In this case, he will get payoff E0≤x≤ξa2V (x, a2). However, by the sym-

metry of V and Φ, we have E0≤x≤ξa2V (x, a2) ≤ E0≤x≤ξa2V (a2, x) ≤ E0≤x≤ξa2V (a1, x) ≤
E0≤x≤ξa1V (a1, x), where the last two inequalities are due to monotonicity of V and the

monotone expectation property. Thus, this deviation is not profitable. The proof that

type (a1, a2) with a1 < a2 does not have a profitable deviation is similar.

Consider the remaining case ξ ∈ (0, 1). Notice that for each (a1, a2) that is supposed

to report truthfully (satisfies a2 > ξa1 and a1 ≥ ξa2), we have 1 − V (a1,ηa1)
V (a1,a2)

≥ 0 and

1− V (ηa2,a2)
V (a1,a2)

≥ 0 by the observation that ξ ≥ η. Furthermore, 1− V (a1,ηa1)
V (a1,a2)

+1− V (ηa2,a2)
V (a1,a2)

=

1 − V (a1,ηa1)+V (ηa2,a2)−V (a1,a2)
V (a1,a2)

≤ 1, because the last term is positive by definition of η in

(6). Therefore, probabilities p1 (a1, a2) and p2 (a1, a2) with the required properties exist.

Take type (a1, a2) with a2 ≤ ξa1. The proof that he would not be better off by reporting

(x, ∗) or (∗, y) for any x and y is identical to the previous case. Suppose that he deviates

and reports (a1, y); he is only able to do so if y > ξa1 and ξy ≤ a1; the first inequality

implies y > a2. His payoff from deviating is at most (1− p2 (a1, y))V (a1, y) ≤ V (a1, ηa1).

At the same time, his equilibrium payoff equals E0≤z≤ξa1V (a1, z), and by definition of ξ

in (7) there exists ξ′ arbitrarily close to ξ such that E0≤z≤ξ′a1V (a1, z) ≥ V (a1, ηa1). Since

the left-hand side is continuous in ξ′, we have E0≤z≤ξa1V (a1, z) ≥ V (a1, ηa1), which

implies that this deviation is not profitable. Now suppose that he deviates and reports

type (x, a2) with a2 > ξx and ξa2 ≤ x; now the first inequality implies x < a1. The

payoff from deviating is at most (1− p1 (x, a2))V (x, a2) ≤ V (ηa2, a2). However, we have

V (ηa2, a2) = V (a2, ηa2) ≤ E0≤z≤ξa2V (a2, z) ≤ E0≤z≤ξa2V (a1, z) ≤ E0≤z≤ξa1V (a1, z),

which is his equilibrium payoff. Thus, this deviation cannot be profitable either.

If we take type (a1, a2) with a1 < ξa2, then we similarly get that this type does not

have a profitable deviation. It remains to consider deviations by type (a1, a2) that reports

truthfully in equilibrium (so a2 > ξa1 and a1 ≥ ξa2). If he deviates by sending message

(a1, ∗), his payoff will equal E0≤z≤ξa1V (a1, z), which is less than V (a1, a2) since a2 > ξa1.

This cannot be profitable; we get a similar contradiction if he deviates by sending (∗, a2).
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Notice that if he sends (x, ∗) for x 6= a1 or (∗, y) for y 6= a2, he will be caught for sure, and

this is not profitable. Now suppose that he deviates by mimicking some type that also

reveals itself in equilibrium. To avoid getting caught with probability 1, he must send

either message (a1, y) for some y or (x, a2) for some x. In the former case, his payoff from

this deviation is the same as that of type (a1, 0), but that type has a lower equilibrium

payoff. Consequently, if the deviation is profitable for type (a1, a2), it must be profitable

for (a1, 0), but we already proved that he does not have profitable deviations. We would

get a similar contradiction if deviating to (x, a2) was profitable. We have thus proved that

no type has a profitable deviation, so there exists a valid mechanism with the required

properties. �

Proof of Proposition 14. Let us pick q,Q ∈ (0,∞) such that the mass of sender

types in [q,Q]×[q,Q] is at least 1−δ. Now consider the functionR (a1) = E0≤a2≤qV̄ (a1, a2)−
V̄ (a1, 0). Since V̄ is continuous and Φ is atomless with full support, R (a1) is a continuous

function on [q,Q]. Furthermore, since V̄ (a1, a2) is locally increasing in a2, it is always

positive. Let ν > 0 be its minimum; since V̄ is uniformly continuous on [q,Q], there is

ε > 0 such that for all a1 ∈ [q,Q] and a2 ≤ ε, V̄ (a1, a2)− V̄ (a1, 0) ≤ ν
2
. Thus, ε has the

property that E0≤a2≤qV̄ (a1, a2) ≥ V̄ (a1, ε) + ν
2

for all a1 ∈ [q,Q].

Since V̄ is submodular and strictly increasing in a2 at a2 = 0, we have V̄ (a1, ε) +

V̄ (ε, a2) > V̄ (a1, 0) + V̄ (0, a2) ≥ V̄ (a1, a2). Let S (a1, a2) = V̄ (a1, ε) + V̄ (ε, a2) −
V̄ (a1, a2); this function is continuous in (a1, a2) and positive, and thus its minimum on

compact [q,Q] × [q,Q] must be positive; denote it by χ > 0. Lastly, let L = V (Q,Q),

and take T = min
{
ν

2L
, χ

2L

}
.

We claim that the following is a valid mechanism for function Ṽt (a1, a2) for t < T . If

either (a) a1 /∈ [q,Q] and a2 ≤ a1, or (b) a1 ∈ [q,Q] and a2 < q, then the sender reports

(a1, ∗), and the first dimension is verified with probability 1. If either (a) a2 /∈ [q,Q] and

a1 < a2, or (b) a2 ∈ [q,Q] and a1 < q, then the sender reports (∗, a2), and the second

dimension is verified with probability 1. Otherwise, the sender reports (a1, a2), and the

verification probabilities satisfy p1 (a1, a2) ≥ 1− Ṽt(ε,a2)

Ṽt(a1,a2)
and p2 (a1, a2) ≥ 1− Ṽt(a1,ε)

Ṽt(a1,a2)
. In

this mechanism, for a1 ∈ [q,Q], we have E0≤a2≤qṼt (a1, a2) ≥ Ṽt (a1, ε); this follows from

E0≤a2≤qṼt (a1, a2)− Ṽt (a1, ε)

= (1− t)
(
E0≤a2≤qV̄ (a1, a2)− V̄ (a1, ε)

)
+ t (E0≤a2≤qV (a1, a2)− V (a1, ε))

≥ (1− t) ν
2
− tL ≥ ν

2
− TL ≥ ν

2
− ν

2L
L = 0.
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We also have Ṽt (a1, ε) + Ṽt (ε, a2) ≥ Ṽt (a1, a2) for a1, a2 ∈ [q,Q]; this follows from

Ṽt (a1, ε) + Ṽt (ε, a2)− Ṽt (a1, a2)

= (1− t)
(
V̄ (a1, ε) + V̄ (ε, a2)− V̄ (a1, a2)

)
+ t (V (a1, ε) + V (ε, a2)− V (a1, a2))

≥ (1− t)χ− 2tL ≥ χ− 2TL ≥ χ− 2
χ

2L
L = 0.

This implies that nonnegative p1 (a1, a2) ≥ 1− Ṽt(ε,a2)

Ṽt(a1,a2)
and p2 (a1, a2) ≥ 1− Ṽt(a1,ε)

Ṽt(a1,a2)
exist.

The proof that the mechanism is valid, i.e. that there is no profitable deviation, is similar

to that in Proposition 13 given the inequalities above. Lastly, the mechanism achieves

full learning on [q,Q]× [q,Q]. �

To prove Propositions 15 and 16, we need some notation and a few lemmas. In what

follows, t ∈ (0, 1]. Suppose that V (a1, a2) = Zt (a1, a2), Φ is uniform on Ω = [0, L]× [0, L],

and M is a connected semi-direct mechanism. Let Ω1 (a1) be the set of types reporting

(a1, ∗) and Ω2 (a2) be the set of types reporting (∗, a2) according to M. Let

Ω0 = Ω \
((⋃

a1∈[0,L]
Ω1 (a1)

)
∪
(⋃

a2∈[0,L]
Ω2 (a2)

))
be the set of types who report their type truthfully. Define ω1 (a1) = sup ({a2 : (a1, a2) ∈ Ω1(a1)} ∪ {0})
and ω2 (a2) = sup ({a1 : (a1, a2) ∈ Ω2(a2)} ∪ {0}); these values are well-defined and lie in

[0, L].

Lemma C1. For any a1, a2, x, y ∈ [0, L], U (a1, y) + U (x, a2) ≥ U (a1, a2).

Proof. Let p1 and p2 be the probabilities of verification of the two dimensions for type

(a1, a2). Then incentive compatibility implies U (a1, y) ≥ p1U (a1, a2) and U (x, a2) ≥
p2U (a1, a2). We have

U (a1, y) + U (x, a2) ≥ (p1 + p2)U (a1, a2) = U (a1, a2) .

Lemma C2. If t < 1, it is impossible that for some a1, a2 ∈ [0, L], (a1, 0) ∈ Ω2 (0) and

(0, a2) ∈ Ω1 (0).

Proof. Suppose that this is possible for some a1, a2. Then there is some type (x, 0) ∈ Ω2 (0)

such that U (x, 0) ≤ V (x, 0); this follows from the fact that the averages of U and V on
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the set of types sending the same message, in this case Ω2 (0), must be the same. Similarly,

there is some type (0, y) ∈ Ω1 (0) such that U (0, y) ≤ V (0, y).

Consider type (x, y). Suppose (x, y) ∈ Ω1 (x), this implies y > 0 (because (x, 0) ∈
Ω2 (0)), and then U (x, y) > V (x, 0) ≥ U (x, 0) (the first inequality follows since V (x, z) >

V (x, 0) for all (x, z), because for t < 1, V (x, ·) is strictly increasing). Then type (x, 0)

has a profitable deviation, which is to send message (x, ∗), a contradiction. We get a

similar contradiction if (x, y) ∈ Ω2 (y).

Consider the remaining case, (x, y) ∈ Ω0. Notice that we must have x, y > 0 in this

case. Now, we have

U (x, 0) + U (0, y) ≤ V (x, 0) + V (0, y)

= (1− t) (x+ y)

< (1− t) (x+ y) + tmin {x, y}
= V (x, y) = U (x, y) ;

the latter follows from (x, y) ∈ Ω0. However, this inequality contradicts Lemma C1. This

contradiction completes the proof.

Lemma C3. Suppose (a1, a2) ∈ Ω1 (a1), and either a1 > 0 or t < 1 (or both). Then for

any y ∈ [0, a2], (a1, y) ∈ Ω1 (a1). Similarly, if (a1, a2) ∈ Ω2 (a2) and either a2 > 0 or

t < 1, then for any x ∈ [0, a1], (x, a2) ∈ Ω2 (a2).

Proof. Take the first part of the statement (the proof of the second part is analogous). It

suffices to prove that (a1, 0) ∈ Ω1 (a1); then the result will follow from connectedness. The

statement is trivial if a2 = 0, so suppose a2 > 0. Now suppose, to obtain a contradiction,

that (a1, 0) /∈ Ω1 (a1). This implies that either (a1, 0) ∈ Ω0 or (a1, 0) ∈ Ω2 (0). In

the former case, U (a1, 0) = V (a1, 0) < U (a1, a2), because V (a1, 0) < V (a1, z) for all

(a1, z) ∈ Ω1 (a1), and U (a1, a2) is the mean of such values. (This argument makes use

of the assumption a1 > 0 in case t = 1, but does not need this assumption if t < 1.)

This implies that type (a1, 0) has a profitable deviation, a contradiction. So suppose

(a1, 0) ∈ Ω2 (0), and consider the following cases separately.

Case 1: t = 1, so V (a1, a2) = min {a1, a2}. In this case, U (a1, 0) = 0 (because this

is the value of V at all types in Ω2 (0)). As before, this shows that type (a1, 0) has a

profitable deviation.

Case 2: t < 1 and a1 = 0. In this case, we have (0, a2) = (a1, a2) ∈ Ω1(a1) = Ω1(0)

and (a1, 0) ∈ Ω2(0); taken together, these contradict Lemma C2.
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Case 3: t < 1 and a1 > 0. We have (a1, 0) ∈ Ω2 (0). Moreover, writing b ≡ ω2(0),

the entire segment from (0, 0) to (b, 0), perhaps excluding point (b, 0), is in Ω2 (0); this

follows from Case 2, which we have already proven (applied as in the second part of the

Lemma). Furthermore, we must have b ≥ 2a1, because otherwise U (a1, 0) < V (a1, 0),

and (a1, 0) would deviate to reporting (a1, ∗). Take some ε ∈
(
0,min{ b−a1

2
, a2

2
}
)
; we have

(b− ε, 0) ∈ Ω2 (0) and thus U (b− ε, 0) = 1−t
2
b (we cannot guarantee that (b, 0) ∈ Ω2 (0),

hence we use (b− ε, 0) instead).

Now consider type (b− ε, a2). We have U (b− ε, 0) = 1−t
2
b < (1− t) (b− ε) =

V (b− ε, 0), so if (b− ε, a2) ∈ Ω1 (b− ε), then (b− ε, 0) would deviate to reporting

(b− ε, ∗). Suppose that (b− ε, a2) ∈ Ω2 (a2), then (0, a2) /∈ Ω2 (a2) (otherwise connected-

ness would imply that (a1, a2) ∈ Ω2 (a2), but this is not the case), and we already proved

that (0, a2) /∈ Ω1 (0). Thus, (0, a2) ∈ Ω0, but then (0, a2) would have a profitable deviation

to reporting (∗, a2), a contradiction. This establishes that (b− ε, a2) ∈ Ω0.

Now, by Lemma C1, U(b − ε, a2) ≤ U(b − ε, 0) + U(a1, a2). Moreover, we know that

U(a1, a2) ≤ U(a1, 0) = U(b − ε, 0) (the equality is because types (a1, 0) and (b − ε, 0)

both send message (∗, 0), and the inequality is because otherwise (a1, 0) would deviate to

(a1, ∗)). Combining gives U(b−ε, a2) ≤ 2U(b−ε, 0) = (1−t)b. On the other hand, because

we have established (b−ε, a2) ∈ Ω0, we get U(b−ε, a2) = V (b−ε, a2) ≥ (1− t)(b−ε+a2).

This is a contradiction.

Lemma C4. The receiver’s objective W (M) satisfies

W (M) =
1

L2

(∫ L

0

β (a1, ω1 (a1) , t) da1 +

∫ L

0

β (a2, ω2 (a2) , t) da2

)
,

where

β (x, y, t) =


1
4
y2 if y ≤ x;

1
4

(
y − t (y−x)2

y

)2

if x < y ≤
(√

1
1−t + 1

)
x;

1
4(1−t)

(
y − ty2−x2

y

)2

if y >
(√

1
1−t + 1

)
x;

(where if t = 1,
√

1
1−t =∞).
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Proof. We have (the factors 1
L2 before the integrals reflect the density of the distribution):

W (M) =

∫
Ω0

|U (a1, a2)− V (a1, a2)| dΦ

+
1

L2

∫ 1

0

∫ ω1(a1)

0

|U (a1, a2)− V (a1, a2)| da2da1

+
1

L2

∫ 1

0

∫ ω2(a2)

0

|U (a1, a2)− V (a1, a2)| da1da2.

Notice that the first term is zero (because of truthtelling, U (a1, a2) = V (a1, a2) for

(a1, a2) ∈ Ω0). Consider the inner integral of the second term. For any fixed a1 > 0

(i.e. for almost all a1), the set of types integrated in this term are exactly the set of

types Ω1 (a1) that send message (a1, ∗) in equilibrium (perhaps with the exception of type

(a1, ω1 (a1))). To see why this is the case, notice that ω1 (a1) = 0 if and only if Ω1 (a1)

is empty or a singleton {(a1, 0)}, so the statement is true. If ω1 (a1) > 0, then from the

definition of ω1 (a1) it follows that Ω1 (a1) is nonempty, in which case (a1, 0) ∈ Ω1 (a1) by

Lemma C3, and thus Ω1 (a1) spans the types from (a1, 0) to (a1, ω1 (a1)).

In the following, assume that ω1 (a1) > 0, for otherwise the contribution of this inner

integral equals zero as it should. We have that U (a1, a2) is the same for (almost) all

types being integrated and that
∫ ω1(a1)

0
U (a1, a2) da2 =

∫ ω1(a1)

0
V (a1, a2) da2. From this,

it is straightforward to get

U (a1, a2) =

{
a1 + ω1(a1)

2
− ta1 if ω1 (a1) ≤ a1;

a1 + ω1(a1)
2
− t (a1)2+(ω1(a1))2

2ω1(a1)
if ω1 (a1) > a1.

Notice that due to V (a1, a2) being increasing in a2 and continuous, there is a value of

z (a1) ∈ (0, ω1 (a1)) such that V (a1, z(a1)) = U (a1, z(a1)) (and this value of z is unique

unless t = 1). By solving the equation, we find

z (a1) =


ω1(a1)

2
if ω1 (a1) ≤ a1;

1
2

(
ω1 (a1)− t (ω1(a1)−a1)2

ω1(a1)

)
if a1 < ω1 (a1) ≤

(√
1

1−t + 1
)
a1;

1
2

(
ω1 (a1)− t

1−t
(a1)2

ω1(a1)

)
if ω1 (a1) >

(√
1

1−t + 1
)
a1.

Now, direct computation of the integral shows that
∫ ω1(a1)

0
|U (a1, a2)− V (a1, a2)| da2 =
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β (a1, ω (a1) , t) in each of the cases; notice that for this calculation, it is convenient to use∫ ω1(a1)

0

|U (a1, a2)− V (a1, a2)| da2

=

∫ z(a1)

0

(U (a1, a2)− V (a1, a2)) da2 +

∫ ω(a1)

z(a1)

(V (a1, a2)− U (a1, a2)) da2

= 2

∫ z(a1)

0

(U (a1, a2)− V (a1, a2)) +

∫ ω(a1)

0

(V (a1, a2)− U (a1, a2)) da2

= 2

∫ z(a1)

0

(U (a1, a2)− V (a1, a2)) ,

which follows from
∫ ω(a1)

0
V (a1, a2) da2 =

∫ ω(a1)

0
U (a1, a2) da2.

We have thus shown that the contribution of Ω1 (a1) is indeed given by β (a1, ω (a1) , t).

To account for other sets Ω1 (·), we need to integrate this over a1, and to account for sets

Ω2 (·), we need to add a similar term. This completes the proof.

Proof of Proposition 15. For completeness, we start by verifying the statement

(made in the text) that for V = Zt, we have η = t
2
, and moreover with uniform Φ, we

have ξ = 2η = t. For any a1 and a2, V
(
a1,

t
2
a1

)
+V

(
t
2
a2, a2

)
=
(
1− t

2

)
a1 +

(
1− t

2

)
a2 =

a1 + a2 − ta1+a2
2
≥ a1 + a2 − t ·max{a1, a2} = V (a1, a2), whereas for any η′ < t

2
, we can

take a1 = a2 = x and then V (x, η′x) + V (η′x, x) = 2(1 + η′ − t)x < (2 − t)x = V (x, x).

This confirms η = t
2
. Moreover, V (a1, a2) is linear in a2 for a2 ≤ a1, so for ξ′ ≤ 1 we have

E0≤a2≤ξ′a1V (a1, a2) = V (a1,
ξ′

2
a1) which leads to ξ = 2η. Proposition 13 now implies that

the proposed mechanism Mt is valid.

For mechanism Mt, ω1 (a1) = ta1 and ω2 (a2) = ta2, so Lemma C4 implies that

W (Mt) =
1

L2

(∫ L

0

(ta1)2

4
da1 +

∫ L

0

(ta2)2

4
da2

)
=
t2L

6
.

Now take any connected semi-direct valid mechanism M′, and let us show that

W (M′) ≥ W (Mt) = t2L
6

. In the light of Lemma C4, it suffices to prove that for any

x ∈ (0, L), β (x, ω′1 (x) , t) + β (x, ω′2 (x) , t) ≥ (tx)2

2
,where ω′1 (x) and ω′2 (x) are defined for

the mechanism M′.

It is easy to show that β (x, y, t) is nondecreasing in y, and in particular if y > x,

then β (x, y, t) ≥ β (x, x, t) = x2

4
. Now suppose first that ω′1 (x) ≥ x. We then have

β (x, ω′1 (x) , t) ≥ x2

4
, and also that β (x, ω′2 (x) , t) ≥ 0. Their sum is therefore at least

x2

4
, which exceeds (tx)2

2
for t <

√
1
2
. If ω′2 (x) ≥ x, the needed inequality is obtained in a
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similar way.

So consider the case ω′1 (x) < x and ω′2 (x) < x. Let us show that it cannot be

that (0, x) ∈ Ω′1 (0). Suppose, to obtain a contradiction, that this is the case, then by

Lemma C2, (x, 0) /∈ Ω′2 (0). This, together with ω′1 (x) < x, implies that U ′ (x, 0) ≤
1
2

(V (x, x) + V (x, 0)) = 1
2

(x+ x− tx+ x− tx) =
(

3
2
− t
)
x. Let y = ω′1(0). Lemma

C3 implies that Ω′1(0) consists of the segment from (0, 0) to (0, y) (possibly excluding

the endpoint (0, y), if y > x). If y = x, then we have U ′ (0, x) = 1−t
2
x and, clearly,

(x, x) ∈ Ω′0, and then U ′ (x, x) − U ′ (x, 0) − U ′ (0, x) ≥ (2− t)x −
(

3
2
− t
)
x − 1−t

2
x =

tx
2
> 0, contradicting Lemma C1. If y > x, take ε ∈

(
0, y−x

2

)
; then U (0, y − ε) = 1−t

2
y.

We similarly have (x, y − ε) ∈ Ω′0, and U ′ (x, y − ε) − U ′ (x, 0) − U ′ (0, y − ε) = x +

(1− t) (y − ε) −
(

3
2
− t
)
x − 1−t

2
y ≥ (1−t)(y−x−2ε)+tx

2
> 0, again contradicting Lemma C1.

This shows that (0, x) /∈ Ω′1 (0); we can similarly show that (x, 0) /∈ Ω′2 (0).

These results imply that both in case (x, 0) ∈ Ω′0 and in case (x, 0) ∈ Ω′1 (x), the

payoff of type (x, 0) under M′ is given by U ′ (x, 0) = (1− t)x +
ω′
1(x)

2
; similarly, we have

U ′ (0, x) = (1− t)x+
ω′
2(x)

2
. Since we must have (x, x) ∈ Ω′0, we have U ′ (x, x) = (2− t)x.

Now by Lemma C1, U ′ (x, x) ≤ U ′ (x, 0) + U ′ (0, x), which simplifies to ω′1 (x) + ω′2 (x) ≥
2tx. We must thus have (ω′1 (x))2 + (ω′2 (x))2 ≥ 2 (tx)2, with equality only being achieved

if ω′1 (x) = ω′2 (x) = tx. But given that ω′1 (x) < x and ω′2 (x) < x,

β (x, ω′1 (x) , t) + β (x, ω′2 (x) , t) =
1

4
(ω′1 (x))

2
+

1

4
(ω′1 (x))

2 ≥ (tx)2

2
,

and the inequality is strict unless ω′1 (x) = ω′2 (x) = tx.

We have thus shown that W (M′) ≥ W (Mt) = t2L
6

, and the equality is strict unless

M′ coincides with Mt for almost all types, which proves that for t <
√

1
2
, Mt is the

optimal mechanism within the class considered, and is essentially unique in that. �

To prove Proposition 16, we first need to prove several further Lemmas (Lemmas C5–

C16). In all of them, we assume that V (a1, a2) = Zt(a1, a2) for t = 1 without mentioning

this explicitly.

Let us call a semi-direct connected valid mechanism an admissible mechanism for

brevity. In Lemmas C5, C6, C7, C8, and C9, we document further properties that any

admissible mechanism M must satisfy.

Lemma C5. For any x ∈ [0, L], either ω1 (x) ≥ x or ω2 (x) ≥ x.

Proof. If x = 0, this is trivial. Take x > 0 and suppose, to obtain a contradiction, that

ω1 (x) < x and ω2 (x) < x. Then type (x, x) ∈ Ω0, and thus U (x, x) = x. Consider
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type (x, 0); if (x, 0) ∈ Ω0 or (x, 0) ∈ Ω2 (0), then U (x, 0) = 0, and if (x, 0) ∈ Ω2 (x),

then U (x, 0) = ω1(x)
2

< x
2
, so in either case, U (x, 0) < x

2
. Similarly, U (0, x) < x

2
. This

contradicts Lemma C1, which completes the proof.

Lemma C6. Suppose that for some x ∈ (0, L) and i ∈ {1, 2}, ωi (x) > x. Then for all

y ∈ (x, ωi (x)), ωi (y) > y, and for all y ∈
[
x+ωi(x)

2
, L
]
, ωi (y) ≥ ωi (x).

Proof. Assume throughout the proof that i = 1; the proof for i = 2 is identical. Take

some y > x; if ω1 (y) ≥ ω1 (x), then both statements hold (because ω1 (x) > x) and we

are done. So consider the remaining case, where ω1 (y) < ω1 (x).

Let us show that ω1 (y) = 0 is impossible. Indeed, if ω1 (y) = 0, then U (y, 0) = 0;

U (y, x) = min {x, y} = x, and U (0, x) ≤ x
2
, because ω2 (x) ≤ x as ω1 (x) > x. We

thus have U (y, x) > U (y, 0) + U (0, x), which contradicts Lemma C1. We thus proceed

assuming that ω1 (y) ∈ (0, ω1 (x)).

Take ε > 0 such that ε < ω1 (x) − ω1 (y), ε < ω1(x)−x
2

, and also ε < ω1 (x) − y if

the latter is positive. Then ε < ω1 (x) − ω1 (y) implies (y, ω1 (x)− ε) ∈ Ω0, and thus

U (y, ω1 (x)− ε) = min {y, ω1 (x)− ε}.
Notice that we have U

(
y, ω1(y)

2

)
≤ ω1(y)

2
, because ω1 (y) > 0 implies

(
y, ω1(y)

2

)
∈ Ω1 (y)

by Lemma C3, and we have V (y, z) = min {y, z} ≤ z for all z ∈ [0, ω1 (y)], which implies

that the average cannot exceed ω1(y)
2

. In addition, we have U
(
x
2
, ω1 (x)− ε

)
≤ x

2
(this

is true for obvious reasons if
(
x
2
, ω1 (x)− ε

)
∈ Ω0 or

(
x
2
, ω1 (x)− ε

)
∈ Ω1

(
x
2

)
, whereas if(

x
2
, ω1 (x)− ε

)
∈ Ω2 (ω1 (x)− ε) it follows since ω2 (ω1 (x)− ε) ≤ x, which is true because

(x, ω1 (x)− ε) ∈ Ω1 (x)). We now use Lemma C1 to obtain:

x

2
+
ω1 (y)

2
≥ U

(x
2
, ω1 (x)− ε

)
+U

(
y,
ω1 (y)

2

)
≥ U (y, ω1 (x)− ε) = min {y, ω1 (x} − ε) .

Now consider the following cases. Suppose that y < ω1 (x), we have min {y, ω1 (x)− ε} =

y by the choice of ε, which implies ω1 (y) ≥ 2y − x > y, since y > x. Moreover, if

y ≥ x+ω1(x)
2

, we get ω1 (y) ≥ 2y−x ≥ x+ω1 (x)−x = ω1 (x). Now suppose that y ≥ ω1 (x),

we have min {y, ω1 (x)− ε} = ω1 (x) − ε, which implies ω1 (y) ≥ 2ω1 (x) − 2ε − x >

ω1 (x) + (ω1 (x)− x− 2ε) > ω1 (x) by the choice of ε. This completes the proof.

Lemma C7. Suppose that for some z ∈ (0, L) and i ∈ {1, 2}, ωi (z) = z. Then for any

x ∈ (0, z), ω1 (x) ≤ z and ω2 (x) ≤ z, and for any x ∈ (z, L), ω1 (x) ≥ z and ω2 (x) ≥ z.
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Proof. Suppose that i = 1, so ω1 (z) = z (the case i = 2 is similar).

First, we show that ω2 (x) ≤ z for x < z. Indeed, for such x we have (x, z) ∈ Ω1 (x),

and the result follows by definition of ω2 (x) (and Lemma C3).

Second, we show that ω1 (x) ≥ z for x > z. Suppose not, so for some x > z we

have ω1 (x) < z. Take any r ∈
(
ω1(x)+2z

3
, z
)

(in this way, r > ω1 (x)) and consider the

type (x, r). We must have (x, r) ∈ Ω0, so U (x, r) = r. Notice that since (z, r) ∈ Ω1 (z)

due to ω1 (z) = z > r, we have U (z, r) = z
2
, and also U

(
x, r+ω1(x)

4

)
≤ r+ω1(x)

4
(indeed,

if
(
x, r+ω1(x)

4

)
∈ Ω0 then it holds as equality, whereas if

(
x, r+ω1(x)

4

)
∈ Ω1 (x), then

U
(
x, r+ω1(x)

4

)
= ω1(x)

2
< r+ω1(x)

4
as we took r > ω1 (x)). We thus have

z

2
+
r + ω1 (x)

4
≥ U (z, r) + U

(
x,
r + ω1 (x)

4

)
≥ U (x, r) = r,

which implies 2z + ω1 (x) ≥ 3r. But this contradicts the choice of r; this contradiction

proves that we must have ω1 (x) ≥ z.

Third, we show that ω2 (x) ≥ z for x > z. Suppose not, so for some x > z we have

ω2 (x) < z. Consider the type (z, x); we must have (z, x) ∈ Ω0, so U (z, x) = z. Notice

that we have U
(
z, z

2

)
= z

2
, and U

(
z
4
, x
)
< z

2
(indeed, if

(
z
4
, x
)
∈ Ω0, then U

(
z
4
, x
)

=
z
4
< z

2
; if

(
z
4
, x
)
∈ Ω1

(
z
4

)
, then U

(
z
4
, x
)
≤ z

4
< z

2
because all types

(
z
4
, y
)
∈ Ω1

(
z
4

)
have V

(
z
4
, y
)
≤ z

4
; and if

(
z
4
, x
)
∈ Ω2 (x), then U

(
z
4
, x
)
≤ ω2(x)

2
< z

2
as we asserted that

ω2 (x) < z). Thus, by Lemma C1, we have

z

2
+
z

2
> U

(
z,
z

2

)
+ U

(z
4
, x
)
≥ U (z, x) = z.

This contradiction shows that ω2 (x) ≥ z.

Fourth, we show that ω1 (x) ≤ z for x < z. Indeed, for such x we have (x, r) ∈ Ω2 (r)

for any r ∈ (z, L) as we just proved, and ω1 (x) ≤ z follows from the definition of ω1 (x).

This completes the proof.

Lemma C8. Suppose that for some x, y ∈ (0, L), ω1 (x) > x and ω2 (y) > y. Then there

exists z ∈ (min {x, y} ,max {x, y}] such that ωi (z) = z for some i ∈ {1, 2}.

Proof. It is impossible that x = y, for otherwise (x, x) would have to be both in Ω1 (x)

and Ω2 (x). Suppose x < y; the case x > y is considered similarly.

Define z by z = sup {r ∈ (x, y] : ω1 (r) > r}; it is well-defined because the set is

nonempty, because by Lemma C6, any x′ ∈ (x,min {ω1 (x) , y}) belongs to it. Let us
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show that it satisfies the requirement. Consider three cases. First, if ω1 (z) = z, then we

are done.

Second, suppose ω1 (z) > z. This implies, in particular, that z 6= y, because ω1 (z) >

z and ω2 (z) > z are incompatible. Now, by Lemma C6, it must be that for s ∈
(z,min {ω1 (z) , y}), ω1 (s) > s. This, however, violates the definition of z as the supre-

mum.

Third, suppose that ω1 (z) < z; this implies z > x since ω1 (x) > x. By Lemma C5,

ω2 (z) ≥ z. By the definition of supremum, there are arbitrarily small ε ∈ (0, z − x) such

that ω1 (z − ε) > z − ε, in particular, one can pick ε < z − ω1 (z). Notice that ω2 (z) ≥ z

implies that ω1 (z − ε) ≤ z. Take δ ∈ (z − ω1 (z − ε) , ε) and consider the point (z, z − δ).
Since ω1 (z − ε) > z − δ by the choice of δ, we have ω2 (z − δ) ≤ z − ε, and since also

ω1 (z) < z − ε < z − δ, we have (z, z − δ) ∈ Ω0, which implies U (z, z − δ) = z − δ. Now

take θ ∈
(
0, z−ε

2

)
; we have U (θ, z − δ) ≤ z−ε

2
(if (θ, z − δ) ∈ Ω2 (z − δ) it follows from

ω2 (z − δ) ≤ z − ε, and if (θ, z − δ) ∈ Ω0 or (θ, z − δ) ∈ Ω1 (θ) this is obviously true). By

similar logic, we have U (z, θ) < z−ε
2

because ω1 (z) < z − ε. Then by Lemma C1,

z − ε ≥ U (θ, z − δ) + U (z, θ) ≥ U (z, z − δ) = z − δ,

which implies δ ≥ ε. However, this contradicts the choice of δ. This contradiction

completes the proof.

Lemma C9. The set of points {z : ω1 (z) = z 6= ω2 (z)} is at most countable, and so is

{z : ω1 (z) 6= z = ω2 (z)}.

Proof. It suffices to prove the result for the first set. This set is a union of two sets,

Z1 = {z : ω1 (z) = z < ω2 (z)} and Z2 = {z : ω1 (z) = z > ω2 (z)}. Let us show that if

z ∈ Z1, then there is ε > 0 such that (z, z + ε)∩Z1 = ∅. This is trivial, since it suffices to

take ε = ω2 (z)− ω1 (z); then for x ∈ (z, z + ε), ω1 (x) = x would contradict Lemma C6.

This means that there is a bijection from Z1 to a certain set of nonintersecting intervals,

which is at most countable (since each interval contains a rational number).

Now let us prove that if z ∈ Z2, then there is ε > 0 such that (z − ε, z) ∩ Z2 = ∅.

Take ε = z − ω2 (z) and consider any r ∈ (z − ε, z) = (ω2 (z) , z). Suppose, to obtain

a contradiction, that r ∈ Z2, then ω1 (r) = r > ω2 (r). Consider the point (r, z). Since

ω1 (r) = r < z and ω2 (z) < r by the choice of r, we have (r, z) ∈ Ω0, and thus U (r, z) =

r. Now take δ ∈
(
0,min

{
ω1 (r) ,max

{
ω2 (z) , r

2

}})
sufficiently small, we would have

U (δ, z) < r
2

(if ω2 (z) > 0, this follows from U (δ, z) ≤ ω2(z)
2

< r
2
, and if ω2 (z) = 0, then it
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follows straightforwardly both if (δ, z) ∈ Ω0 and if (δ, z) ∈ Ω1 (δ)), and U (r, δ) = ω1(r)
2

= r
2
.

This implies
r

2
+
r

2
> U (δ, z) + U (r, δ) ≥ U (r, z) = r,

a contradiction, which shows that for the chosen ε, (z − ε, z) ∩ Z2 = ∅. But then, as

before, we obtain a bijection from Z2 to a certain set of nonintersecting intervals, which

is at most countable. This completes the proof.

Lemma C10. Suppose that M is an admissible mechanism. Then there is an admissible

mechanism M′ with W (M′) = W (M) and such that the sets Ω′1 (0) and Ω′2 (0) are

empty.

Proof. DefineM′ as follows. Take any (a1, a2). If (a1, a2) ∈ Ω1 (0), then let (a1, a2) ∈ Ω′0,

and p′1 (a1, a2) = 1, p′2 (a1, a2) = 0 (so dimension 1 is verified for sure). Similarly, if

(a1, a2) ∈ Ω2 (0), then let (a1, a2) ∈ Ω′0, and p′1 (a1, a2) = 0, p′2 (a1, a2) = 1. Otherwise, let

(a1, a2) send the same message in M′ as in M, and let the verification probabilities for

all messages not defined earlier be the same in M′ as in M (with the exception of (0, ∗)
and (∗, 0), which are not allowed under the new mechanism). The posterior beliefs are

defined in the natural way.

Notice that in M′, each type gets the same equilibrium payoff as in M, and a devi-

ation by any type (x, y) to send the message that type (a1, a2) sends in equilibrium will

result in the same payoff under M′ as under M. This implies that all incentive com-

patibility constraints are satisfied, and the mechanism M′ is admissible and satisfies the

requirement. This completes the proof.

Lemma C11. Suppose that M is an admissible mechanism. Then there is an admissible

mechanism M′ with W (M′) = W (M) such that the conclusions of Lemma C10 are

satisfied, and also for z ∈ (0, L), ω′1 (z) = z implies ω′2 (z) ≥ z and ω′2 (z) = z implies

ω′1 (z) ≥ z.

Proof. By Lemma C10 we may assume that M satisfies its requirements. Let us define

the mechanism M′ as follows. Take any (a1, a2). If 0 ≤ a2 < a1 < L and ω1 (a1) < a1 =

ω2 (a1), then type (a1, a2) will send message (a1, ∗) under M′ (and after such message,

dimension 1 will be verified for sure); in this case, the set of types that send message (a1, ∗)
would be {(a1, a2) : a2 < a1}, which is connected. If 0 ≤ a1 < a2 < L and ω2 (a2) < a2 =

ω1 (a2), then type (a1, a2) will send message (∗, a2) under M′ (and after such message,
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dimension 2 will be verified for sure); then, similarly, message (∗, a2) is sent by a connected

set of types. In all other cases, type (a1, a2) will send the same message underM′ as under

M, and verification probabilities following these messages will be the same. The posterior

beliefs are defined in a natural way.

Notice that in the new mechanism M′, each message is sent by a connected set of

types. To see this, notice that if a1 is such that ω1 (a1) < a1 = ω2 (a1), then message

(a1, ∗) is sent by a connected set in M′ by construction. Otherwise, if a1 is such that

ω1 (a1) < a1 = ω2 (a1) does not hold, then the set of types that send (a1, ∗) in M′ is a

subset of the set of those that send this message in M (i.e., Ω′1 (a1) ⊂ Ω1 (a1)), which

implies that ω′1 (a1) ≤ ω1 (a1). Let us prove that a2 < ω2 (a1) implies (a1, a2) ∈ Ω′1 (a1);

this would immediately imply that Ω′1 (a1) is connected. By construction, if ω1 (a1) <

a1 = ω2 (a1) does not hold, then (a1, a2) /∈ Ω′1 (a1) is possible only if a2 ∈ (a1, L) and

ω2 (a2) < a2 = ω1 (a2). By Lemma C6, ω1 (a2) = a2 implies, in particular, that ω2 (a1) ≤
a2, because a1 < a2. But we took a2 < ω2 (a1), so we get a contradiction, showing that

Ω′1 (a1) is connected for each a1. We can similarly show that Ω′2 (a2) is connected for each

a2. This shows that M′ is connected, and it is semi-direct by construction.

It is easy to see, again by construction, that mechanism M′ satisfies the required

property (that for z ∈ (0, L), ω′1 (z) = z implies ω′2 (z) ≥ z and ω′2 (z) = z implies

ω′1 (z) ≥ z). Furthermore, by Lemma C9, the set of types (a1, a2) for which payoffs may

have changed has measure zero, and as a result W (M′) = W (M). It remains to prove

that the new mechanism is incentive compatible.

We need to show that no type (x, y) could benefit from deviating and sending some

other equilibrium message (we may assume that non-equilibrium messages are forbidden).

Suppose that it benefits from sending a message that type (a1, a2) sent. It suffices to

consider cases where either (a) max {a1, a2} ∈ (0, L), a1 6= a2, and ω′1 (max {a1, a2}) =

ω′2 (max {a1, a2}) = max {a1, a2}, or (b) max {x, y} ∈ (0, L), x 6= y, and ω′1 (max {x, y}) =

ω′2 (max {x, y}) = max {x, y} (or perhaps both); in other cases, the deviation cannot be

profitable because it was not under mechanism M.

Consider Case (a) first. Without loss of generality, suppose a1 > a2; the opposite case

is considered similarly. In M′, (a1, a2) sends message (a1, ∗), so for the deviation to be

profitable, it must be that x = a1 and y ≥ a1 (because ω′1 (a1) = a1). For such a type,

a deviation yields a payoff U ′ (a1, a2) = a1
2

. On the other hand, in case (x, y) ∈ Ω′0, we

have U ′ (x, y) = min {x, y} = a1. In case (x, y) ∈ Ω′2 (y), notice that by construction,

ω′1 (a1) = ω′2 (a1) = a1 may only be true if we had either ω1 (a1) = a1 or ω2 (a1) = a1

(or both) in mechanism M; however, by Lemma C7, this means that ω2 (y) ≥ a1, and

by construction, this property is preserved in M′, so ω′2 (y) ≥ a1, which implies that
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U ′ (x, y) ≥ a1
2

in this case. So, in either case, the deviation is not profitable, and the case

a1 < a2 is considered similarly.

Now consider Case (b), and again without loss of generality, suppose x > y. We have

that type (x, y) gets U ′ (x, y) = x
2
. A deviation to sending the same message as (a1, a2)

may only be profitable if either a1 = x or a2 = y. Suppose a1 = x; for this to be a

deviation it must be that (a1, a2) /∈ Ω1 (x), and in particular a2 ≥ x. If (a1, a2) ∈ Ω′2 (a2),

then the deviation is caught for sure, hence is not profitable. If (a1, a2) ∈ Ω′0, it must

be that (a1, a2) ∈ Ω0 in mechanism M, and the verification probabilities were the same.

In addition, under mechanism M, type (x, 0) got either payoff U (x, 0) = 0 or U (x, 0) =
ω1(x)

2
≤ x

2
; thus, if (x, y) has a profitable deviation to (a1, a2) in M′, then for type (x, 0)

this deviation was profitable under M, which is impossible since M is admissible. Now

suppose that a2 = y. If a1 < x, then ω′1 (x) = ω′2 (x) = x implies that U (a1, a2) ≤ x
2
, so

this is not a profitable deviation. If a1 > x, then similarly to Case (a), ω′1 (x) = ω′2 (x) = x

is only possible if either ω1 (x) = x or ω2 (x) = x (or both) in mechanismM, and Lemma

C7 implies that ω1 (a1) ≥ x, which by construction means that ω′1 (a1) ≥ x. This means

that (a1, a2) ∈ Ω′1 (a1), and the deviation to (a1, a2) will be detected for sure, which means

that it is not profitable in this case as well. This completes the proof.

Lemma C12. Suppose that M is an admissible mechanism. Then there is an admissible

mechanism M′ with W (M′) = W (M) such that the conclusions of Lemmas C10 and

C11 are satisfied, and also ω′1 (z) = ω′2 (z) = z implies (z, z) ∈ Ω′0 and also ω′1 (L) =

ω′2 (L) = L.

Proof. By Lemmas C10 and C11 we may assume thatM satisfies their conclusions. Let us

define the mechanismM′ as follows. We require that types (x, L) for x < L send message

(∗, L) (with dimension 2 verified for sure) and types (L, y) for y < L send message (L, ∗)
(with dimension 1 verified for sure). We furthermore require that if ω1 (z) = ω2 (z) = z

for z > 0, then (z, z) sends message (z, z), following which each dimension is verified with

probability 1
2

(in this way, the property ω′1 (z) = ω′2 (z) = z is preserved). In all other

cases, type (a1, a2) will send the same message under M′ as under M, and verification

probabilities following these messages will be the same. The beliefs are defined in a natural

way. Then mechanism M′ satisfies the requirements (notice that (0, 0) ∈ Ω0 because M
satisfies the conclusions of Lemma C10, and thus (0, 0) ∈ Ω′0); furthermore, the payoffs

may only have changed for a set of types of measure zero, so W (M′) =W (M).

Let us show that mechanismM′ is incentive compatible. First, observe that any devi-

ation to (∗, L) or (L, ∗) will be caught, except if the deviating type is (L,L), for which such
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deviation is clearly unprofitable. If type (x, L) with x < L deviates to reporting (L,L),

he moves from getting U ′ (x, L) = L
2

for sure to getting U ′ (L,L) = L with probability 1
2
,

so this is not profitable. Deviating to reporting (x, ∗) cannot be profitable as such types

cannot get more than L
2
, so the only possible deviation by this type is to report (x, y) for

y < L and (x, y) ∈ Ω′0. This cannot be profitable if x = y, because this would imply that

ω′1 (x) = ω′2 (x) = x, so by construction each dimension is verified with probability 1
2
, and

in expectation such deviation would yield x
2
< L

2
. If x 6= y, then we must have (x, y) ∈ Ω0

inM by construction. Then if type (x, L) had a profitable deviation to (x, y) inM′, then

so would type (x, 0) in M′ (because its equilibrium payoff is ω1(x)
2

), and since its payoff

under M is the same, this would be a profitable deviation under M as well. However,

this is impossible.

Let us now consider the deviations that involve types (z, z) in cases ω′1 (z) = ω′2 (z) = z,

but not types (x, L) or (L, y). Suppose some type (x, y) would benefit from deviating to

(z, z); then either x = z or y = z. Suppose x = z; if x < z, we have U ′ (x, z) = z
2
,

and in case of deviation the expected payoff would be z
2

as well, because each dimension

is verified with probability 1
2
. If instead x > z, then ω′1 (z) = ω′2 (z) = z means that

ω1 (z) = ω2 (z) = z (because z < L in this case), and this means that ω1 (x) ≥ z by

Lemma C7, so U ′ (x, z) ≥ z
2
, so this is not a profitable deviation. We would similarly

prove that deviations from (x, y) with y = z cannot be profitable.

The remaining case to consider is deviation from type (z, z) to some type that was

not affected by the modifications above. By construction, the payoff of type (z, z) is

U ′ (z, z) = z, whereas under mechanism M this type’s payoff could not be higher (it

was either z or z
2
). Thus, if some deviation from type (z, z) to another type that was

not affected by the modification is profitable under M′, it would be profitable under M,

which is impossible. This completes the proof.

To formulate the next result, we introduce the following definition. We call a mech-

anism M pseudo-admissible if it is connected, semi-direct, satisfies the Bayesian up-

dating property, Ω1 (0) = Ω2 (0) = ∅, ω1 (z) > 0 implies (z, 0) ∈ Ω1 (z), ω2 (z) > 0

implies (0, z) ∈ Ω2 (z), ω1 (z) ≥ z for each z ∈ [0, L], and for each (a1, a2) ∈ Ω0,

ω1 (a1)ω2 (a2) ≥ (a1)2. Notice that we do not require M to be incentive compatible;

this requirement is replaced by: (a) a requirement that may be fulfilled by a modification

of any admissible mechanism by Lemma C10; (b) a property that holds for any admissi-

ble mechanism by Lemma C3; and (c) by two conditions on ω1 (·) and ω2 (·) that will be

satisfied by the mechanism that we construct in the proof of the next Lemma.
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Lemma C13. Suppose that M is an admissible mechanism. Then there is a pseudo-

admissible mechanism M′ with W (M′) =W (M).

Proof. We may assume that mechanism M satisfies the conclusions of Lemmas C10,

C11, and C12. Throughout this proof, we will, for a vector a = (a1, a2), define ‖a‖ =

max {a1, a2}.
Define sets Z0, Z1, Z2 as follows. For type (a1, a2), if ω1 (‖a‖) = ω2 (‖a‖) = ‖a‖, then

(a1, a2) ∈ Z0; if ω1 (‖a‖) > ‖a‖ ≥ ω2 (‖a‖), then (a1, a2) ∈ Z1, and if ω2 (‖a‖) > ‖a‖ ≥
ω1 (‖a‖), then (a1, a2) ∈ Z2. These three sets are pairwise disjoint, furthermore, we have

Z0∪Z1∪Z2 = Ω (indeed, ω1 (‖a‖) > ‖a‖ and ω2 (‖a‖) > ‖a‖ are incompatible; ω1 (‖a‖) <
‖a‖ and ω2 (‖a‖) < ‖a‖ is ruled out by Lemma C5; whereas ω1 (‖a‖) = ‖a‖ > ω2 (‖a‖) is

ruled out because the conclusions of Lemma C11 and C12 are satisfied; the same is true

for ω2 (‖a‖) = ‖a‖ > ω1 (‖a‖)). Importantly, there is symmetry, in that (a1, a2) ∈ Zi if

and only if (a2, a1) ∈ Zi, for each i ∈ {0, 1, 2}.
Let us prove that if two types send the same message under M, then they are in the

same Zi. To see this, notice that if (a1, a2) ∈ Ω0, then it is the only type that sends

this message, so the statement holds trivially. Suppose that (a1, a2) , (a1, y) ∈ Ω1 (a1);

without loss of generality suppose that a2 < y. Now consider the following cases. If

a2 < y ≤ a1, then ‖a‖ = ‖(a1, y)‖ = a1, and the two types belong to the same set by

construction. If a2 ≤ a1 < y, then (a1, y) ∈ Ω1 (a1) implies ω1 (a1) > a1. This means that

‖a‖ = a1 < ω1 (a1), so (a1, a2) ∈ Z1. Now, (a1, y) ∈ Ω1 (a1) implies ω2 (y) ≤ a1 < y, and

then we must have ω1 (y) > y (otherwise, this would contradict the conclusions of Lemma

C11 if y < L or Lemma C12 if y = L), which implies (a1, y) ∈ Z1. In the remaining

case a1 < a2 < y, (a1, y) ∈ Ω1 (a1) implies ω1 (a1) ≥ y > a2, and ‖a‖ = a2 < ω1 (a1), so

(a1, a2) ∈ Z1. Similarly to the previous case, (a1, y) ∈ Ω1 (a1) implies ω2 (y) ≤ a1 < y, and

thus ω1 (y) > y, so (a1, y) ∈ Z1. So, if (a1, a2) , (a1, y) ∈ Ω1 (a1), then the two types belong

to the same Zi, and we can consider the types (a1, a2) , (x, a2) ∈ Ω2 (a2) in a similar way.

We have thus established that if two types send the same message under M, then they

are in the same Zi.

Define mechanism M′ as follows. If (a1, a2) ∈ Z0 ∪ Z1, then type (a1, a2) sends the

same message in M′ as in M. If (a1, a2) ∈ Z2, then type (a1, a2) sends the message

“symmetric” to what type (a2, a1) did in equilibrium. Specifically, if (a2, a1) ∈ Ω0, then

(a1, a2) sends message (a1, a2). If (a2, a1) ∈ Ω1 (a2), then (a1, a2) sends message (∗, a2).

If (a2, a1) ∈ Ω2 (a1), then (a1, a2) sends message (a1, ∗). The beliefs are defined in the

natural way. Notice that we do not have to define verification probabilities (though this

may be done in a natural way), because we do not claim incentive compatibility of M′.

Given the properties above, we have that if two types (a1, a2) and (x, y) send the same
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message in M, then if they are in Z0 ∪ Z1 they send the same message in M′, and if

they are in Z2, then (a2, a1) and (y, x) send the same message in M′. We therefore have

W (M′) = W (M); furthermore, by construction, M′ satisfies all the properties of a

pseudo-admissible mechanism, except perhaps for the last one. We thus need to prove

that for (a1, a2) ∈ Ω′0, ω′1 (a1)ω′2 (a2) ≥ (a1)2.

Let us first show that for any (a1, a2) ∈ Ω′0, U ′ (a1, a2) ≤ U ′ (a1, 0)+U ′ (0, a2). Suppose

first that (a1, a2) ∈ Z0; then by definition of Z0, we must have a1 = a2 = ‖a‖, and

ω1 (‖a‖) = ω2 (‖a‖) = ‖a‖. By construction, we have ω′1 (‖a‖) = ω′2 (‖a‖) = ‖a‖ as well.

Thus, U ′ (a1, a2) = ‖a‖ and U ′ (a1, 0) = U ′ (0, a2) = ‖a‖
2

, so the inequality is satisfied.

Consider the case (a1, a2) ∈ Z1. This means ω1 (‖a‖) > ‖a‖ ≥ ω2 (‖a‖), and by

construction ω′1 (‖a‖) > ‖a‖ ≥ ω′2 (‖a‖); now, (a1, a2) ∈ Ω′0 is only possible if a1 < a2.

Now, (a1, a2) ∈ Ω′0 implies ω′2 (a2) ≤ a1, and since (a1, a2) ∈ Z1, we have ω2 (a2) ≤ a1.

There are three possibilities. Suppose that (a1, 0) ∈ Z0. Then ω1 (a1) = a1, and

by Lemma C7, ω2 (a2) ≥ a1. Thus, we have ω′2 (a2) = ω2 (a2) = a1, and consequently

U ′ (a1, a2) = a1, U ′ (a1, 0) =
ω′
1(a1)

2
= ω1(a1)

2
= a1

2
, and U ′ (0, a2) =

ω′
2(a2)

2
= a1, and the

inequality follows.

Now suppose that (a1, 0) ∈ Z1. In this case, the inequality U (a1, a2) ≤ U (a1, 0) +

U (0, a2), which holds by Lemma C1, implies U ′ (a1, a2) ≤ U ′ (a1, 0) + U ′ (0, a2) because

the corresponding payoffs are identical under M and under M′.

The last possibility is that (a1, 0) ∈ Z2; in other words, ω2 (a1) > a1. We also have

ω2 (a2) ≤ a1 < a2, and thus by Lemma C8 there is some z ∈ (a1, a2] such that ωi (z) = z

for some i ∈ {1, 2}. If z < a2, then by Lemma C7, we must have ω2 (a2) ≥ z > a1, which

contradicts ω2 (a2) ≤ a1, whereas if z = a2, then ω2 (a2) ≥ z > a1 follows from the fact

that M satisfies the conclusion of Lemma C11, again a contradiction. Thus, we have

shown that (a1, a2) ∈ Z1 implies that U ′ (a1, a2) ≤ U ′ (a1, 0) + U ′ (0, a2) holds.

Now consider the case (a1, a2) ∈ Z2; it is very similar to the previous case. We have

ω2 (‖a‖) > ‖a‖ ≥ ω1 (‖a‖) and thus, by construction, ω′1 (‖a‖) > ‖a‖ ≥ ω′2 (‖a‖). As

before, (a1, a2) ∈ Ω′0 implies a1 < a2, and we must have ω′2 (a2) ≤ a1; since (a1, a2) ∈ Z2,

we must have ω1 (a2) ≤ a1.

Again, consider three possibilities. Suppose that (a1, 0) ∈ Z0. Then ω1 (a1) = a1, and

by Lemma C7, ω1 (a2) ≥ a1. Thus, we have ω′2 (a2) = ω1 (a2) = a1, and consequently

U ′ (a1, a2) = a1, U ′ (a1, 0) =
ω′
1(a1)

2
= ω1(a1)

2
= a1

2
, and U ′ (0, a2) =

ω′
2(a2)

2
= a1, and the

inequality follows.

Now suppose that (a1, 0) ∈ Z1, which means ω1 (a1) > a1. Since ‖a‖ = a2, we also

have ω2 (a2) > a2, which, by Lemma C8, implies that there is some z ∈ (a1, a2] such

that ωi (z) = z for some i ∈ {1, 2}. If z < a2, then by Lemma C7 we must have
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ω1 (a2) ≥ z > a1, and if z = a2, we have ω1 (a2) ≥ z > a1 because M satisfies the

conclusion of Lemma C11; in either case we get a contradiction with ω1 (a2) ≤ a1.

The last case is (a1, 0) ∈ Z2. By Lemma C1 applied to mechanism M, we have

U (a2, a1) ≤ U (0, a1) + U (a2, 0), and since we have in this case U ′ (a1, a2) = U (a2, a1),

U ′ (a1, 0) = U (0, a1), U ′ (0, a2) = U (a2, 0), we get the required inequality U ′ (a1, a2) ≤
U ′ (a1, 0) + U ′ (0, a2) in this case as well.

Now let us use this inequality to prove that for (a1, a2) ∈ Ω′0, ω′1 (a1)ω′2 (a2) ≥ (a1)2.

Notice that if a1 = 0 then the inequality is satisfied automatically, so suppose a1 > 0.

Since ω′1 (a1) ≥ a1, we have a2 ≥ a1, and thus U ′ (a1, a2) = min {a1, a2} = a1. We also

have U ′ (a1, 0) = a1
ω′
1(a1)

a1
2

+
ω′
1(a1)−a1
ω′
1(a1)

a1 = a1 − (a1)2

2ω′
1(a1)

, and U ′ (0, a2) =
ω′
2(a2)

2
. Using the

inequality we proved earlier, we have

a1 = U ′ (a1, a2) ≤ U ′ (a1, 0) + U ′ (0, a2) = a1 −
(a1)2

2ω′1 (a1)
+
ω′2 (a2)

2
,

so
ω′
2(a2)

2
≥ (a1)2

2ω′
1(a1)

, which implies ω′1 (a1)ω′2 (a2) ≥ (a1)2. This completes the proof that

M′ is a pseudo-admissible mechanism.

Lemma C14. Suppose that M is a pseudo-admissible mechanism. Then

W (M) =
1

L2

∫ L

0

(
a1 −

(a1)2

2ω1 (a1)

)2

da1 +
1

L2

∫ L

0

(
ω2 (a2)

2

)2

da2.

Proof. This follows immediately from Lemma C4 in case t = 1, where we simplified

ω1 (a1)− (ω1(a1)−a1)2

ω1(a1)
= 2

(
a1 − (a1)2

2ω1(a1)

)
.

Lemma C15. Suppose that M is a pseudo-admissible mechanism. Then there is a

pseudo-admissible mechanismM′ such that for each z, ω′1 (z) ≤ ω1 (z), ω′2 (z) ≤ ω2 (z) and

ω′1 (z) and ω′2 (z) are monotonically increasing; in this mechanism, W (M′) ≤ W (M).

Proof. Define mechanism M′ as follows. Let type (a1, a2) send message (a1, ∗) in M′ if

and only if all x ≥ a1, type (x, a2) sends message (x, ∗) inM. Let type (a1, a2) send mes-

sage (∗, a2) inM′ if and only if all y ≥ a2, type (a1, y) sends message (∗, y) inM. (Notice

that no type (a1, a2) satisfies both properties, so these definitions are not contradictory.)

Otherwise, let type (a1, a2) send message (a1, a2). Since incentive compatibility is not re-

quired for pseudo-admissible mechanisms, the probabilities of verification are immaterial.

The posterior beliefs are defined in a natural way.
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In mechanismM′, we have ω′1 (a1) = infx≥a1 ω1 (x); this implies that ω′1 (a1) ≤ ω1 (a1),

ω′1 (a1) is monotonically increasing, and also ω′1 (a1) ≥ a1 (since ω1 (x) ≥ x ≥ a1 for

each x ≥ a1). Similarly, ω′2 (a2) = infy≥a2 ω2 (y); this implies that ω′2 (a2) ≤ ω2 (a2)

and ω′2 (a2) is monotonically increasing. Furthermore, Lemma C14 implies W (M′) ≤
W (M), because a decrease in ω1 (a1) or ω2 (a2) may only make W (M) smaller (notice

that a1− (a1)2

2ω1(a1)
≥ 0, because ω1 (a1) ≥ a1). It is easy to see that the other properties of a

pseudo-admissible mechanism are satisfied as well, except that ω′1 (a1)ω′2 (a2) ≥ (a1)2 for

any (a1, a2) ∈ Ω′0, which we prove explicitly.

Take any (a1, a2) ∈ Ω′0, and let us prove that ω′1 (a1)ω′2 (a2) ≥ (a1)2. Take any ε > 0.

Let us show that there is x ≥ a1 such that (x, a2) /∈ Ω1 (x) and ω1 (x) ≤ ω′1 (a1)+ε. Indeed,

suppose not; then there is x̃ ≥ a1 satisfying ω1 (x̃) ≤ ω′1 (a1) + ε by the definition of the

infimum, and furthermore (x̃, a2) ∈ Ω1 (x̃). This is only possible if ω1 (x̃) ≥ a2, which

implies ω′1 (a1) ≥ a2− ε. Now take any x̂ ≥ a1 with ω1 (x̂) > ω′1 (a1) + ε, then ω1 (x̂) > a2,

and thus (x̂, a2) ∈ Ω1 (x̂). However, this means that for all x̂ ≥ a1, regardless of whether

ω1 (x̂) ≤ ω′1 (a1) + ε or not, (x̂, a2) ∈ Ω1 (x̂), which by construction of mechanism M′

means that (a1, a2) should send message (a1, ∗) in M′, which contradicts (a1, a2) ∈ Ω′0.

We can similarly show that there is y ≥ a2 such that (a1, y) /∈ Ω2 (y) and ω2 (y) ≤
ω′2 (a2) + ε. Now, take such x and y and consider (x, y). Notice that (x, y) ∈ Ω0: indeed,

if (x, y) ∈ Ω1 (x), then (x, a2) ∈ Ω1 (x), contradicting the choice of x; similarly, if (x, y) ∈
Ω2 (y), then (a1, y) ∈ Ω2 (y), contradicting the choice of y. Now, since M is pseudo-

admissible and (x, y) ∈ Ω0, we have ω1 (x)ω2 (y) ≥ x2. Therefore, using x ≥ a1, we

have

ω′1 (a1)ω′2 (a2)− (a1)2 ≥ (ω1 (x)− ε) (ω2 (y)− ε)− x2

≥ ε2 − εω1 (x)− εω2 (y) .

Now, since ω1 (x) and ω2 (y) are bounded and ε may be chosen arbitrarily low, we must

have ω′1 (a1)ω′2 (a2) ≥ (a1)2. This shows that mechanism M′ is pseudo-admissible, which

completes the proof.

Lemma C16. For any pseudo-admissible mechanism with monotone ω1 (z) and ω2 (z),

W (M) ≥ 2

15
L+

1

L2

∫∫
A

x4

2y3
dxdy,

where A is defined as A = {(a1, a2) ∈ Ω : a2 ≥ ω1 (a1)}.
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Proof. We use the formula from Lemma C14. Take the first term and rewrite it as:

1

L2

∫ L

0

(
x− x2

2ω1 (x)

)2

dx

=
1

L2

∫ L

0

(
x− x2

2M

)2

dx

− 1

L2

(∫ L

0

(
x− x2

2M

)2

dx−
∫ L

0

(
x− x2

2ω1 (x)

)2

dx

)

=
2

15
L− 1

L2

∫ L

0

((
x− x2

2M

)2

−
(
x− x2

2ω1 (x)

)2
)
dx

=
2

15
L− 1

L2

∫ L

0

(∫ L

ω1(x)

2

(
x− x2

2y

)
x2

2y2
dy

)
dx

=
2

15
L− 1

L2

∫∫
A

(
x3

y2
− x4

2y3

)
dxdy.

To proceed with the second term, consider the function f (y) defined for y ∈ [ω1 (0) , L]

and given by

f (y) = inf {x ∈ [0, L] : ω1 (x) ≥ y} ;

it is well-defined because ω1 (x) ≥ x for all x, and in particular ω1 (L) = L, so the set

is nonempty. (Notice that if ω1 (x) is strictly increasing and continuous, then f (y) is its

inverse: f (y) = (ω1)−1 (y).)

Let us show that for all y ∈ (ω1 (0) , L), ω2 (y) ≥ (f(y))2

y
. Suppose first that f (y) >

ω2 (y). Then for ε ∈ (0, f (y)− ω2 (y)), (f (y)− ε, y) ∈ Ω0. Thus, (ω1 (f (y)− ε))ω2 (y) ≥
(f (y)− ε)2. Now, we have ω1 (f (y)− ε) < y by definition of f (y), so ω2 (y) ≥ (f(y)−ε)2

y
,

and since this is true for arbitrarily small ε, we have ω2 (y) ≥ (f(y))2

y
. Second, suppose

that f (y) = ω2 (y). Notice that we must have f (y) ≤ y; indeed, f (y) > y would imply

that for x ∈ (y, f (y)), we would have ω1 (x) < y < x, which contradicts ω1 (x) ≥ x. Thus,

1 ≥ f(y)
y

, and multiplying this inequality by equality ω2 (y) = f (y) we get ω2 (y) ≥ (f(y))2

y
.

Lastly, suppose that f (y) < ω2 (y). Since ω2 (y) ≤ y (because ω1 (x) ≥ x for all x), we

have f (y) < y, so 1 > f(y)
y

, and multiplying this inequality by inequality ω2 (y) > f (y)

we get that the required inequality ω2 (y) ≥ (f(y))2

y
holds.
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Using this inequality, we rewrite the second term from Lemma C14 as

1

L2

∫ L

0

(
ω2 (y)

2

)2

dy ≥ 1

L2

∫ L

ω1(0)

(
(f (y))2

2y

)2

dy

=
1

L2

∫ L

0

1

4y2
(f (y))4 dy

=
1

L2

∫ L

0

1

4y2

(∫ f(y)

0

4x3dx

)
dy

=
1

L2

∫∫
A

x3

y2
dxdy.

We therefore have

W (M) ≥ 2

15
L− 1

L2

∫∫
A

(
x3

y2
− x4

2y3

)
dxdy +

1

L2

∫∫
A

x3

y2
dxdy

=
2

15
L+

1

L2

∫∫
A

x4

2y3
dxdy.

This completes the proof.

Proof of Proposition 16. First, notice that for the mechanisms in the Proposition,

W (M) = 2
15
L; this follows immediately from Lemma C14. Suppose that M′ is an

admissible mechanism that does not coincide with either of the mechanisms described in

the proposition almost everywhere; then ω′1 (a1) < L for a positive measure of a1 and

ω′2 (a2) < L for a positive measure of a2. By Lemma C13, there is a pseudo-admissible

mechanism M′′ such that W (M′′) =W (M′), however, by construction, ω′′1 (a1) < L for

a positive measure of a1. Now, by Lemma C15, there is a pseudo-admissible mechanism

M′′′ such that ω′′1 (a1) and ω′′2 (a2) are monotone, ω′′′1 (a1) < L for a positive measure of

a1, and W (M′′′) ≤ W (M′′). Now, by Lemma C16, W (M′′′) > 2
15
L; therefore, we have

W (M′) =W (M′′) ≥ W (M′′′) > 2
15
L. Thus, 2

15
L is indeed the minimum of W (M) for

an admissible mechanism, and it is achieved by exactly two mechanisms, up to differences

on a set of measure zero. This completes the proof. �

Proof of Proposition 17. Suppose, for contradiction, that there is a mechanism

that achieves full learning using at most k tests. Let a be a particular type such that

k < k(a). For each dimension i = 1, . . . , n, let qi be the probability that the sender gets

tested on dimension i if his type is a (and he follows the equilibrium strategy). Then
∑

i qi

is the expected number of tests performed when the sender is type a; hence,
∑

i qi ≤ k <
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k(a). By definition of k(a), the vector (q1, . . . , qn) must violate some constraint of the

linear program in the proposition statement: that is, there is some nonempty subset S of

coordinates such that V (a|S) <
(

1−
∑

j /∈S qj

)
V (a).

Now if the sender’s true type is a|S, but he imitates type a, he will be caught only if

some dimension j /∈ S is tested, which happens with probability at most
∑

j /∈S qj. (Note

that this is true even though the probability of testing dimension j “off-path” — i.e. once

a lie on another dimension has been detected — need not equal qj. The reason is because,

for each j /∈ S, the probability of j being the first dimension outside of S that gets tested

must be the same for the deviating a|S as it would be for a truthful sender of type a, and

so is at most qj.) Therefore, with probability at least 1−
∑

j /∈S qj, the lie is not detected.

Hence, the sender receives payoff at least
(

1−
∑

j /∈S qj

)
V (a) > V (a|S). So the sender

would rather deviate, and the mechanism is not valid. This contradiction completes the

proof. �
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